<span style="font-family: Arial, Helvetica, sans-serif;">function [X_norm, mu, sigma] = featureNormalize(X)</span>
%FEATURENORMALIZE Normalizes the features in X % FEATURENORMALIZE(X) returns a normalized version of X where % the mean value of each feature is 0 and the standard deviation % is 1. This is often a good preprocessing step to do when % working with learning algorithms. % You need to set these values correctly X_norm = X; mu = zeros(1, size(X, 2)); sigma = zeros(1, size(X, 2)); % ====================== YOUR CODE HERE ====================== % Instructions: First, for each feature dimension, compute the mean % of the feature and subtract it from the dataset, % storing the mean value in mu. Next, compute the % standard deviation of each feature and divide % each feature by it's standard deviation, storing % the standard deviation in sigma. % % Note that X is a matrix where each column is a % feature and each row is an example. You need % to perform the normalization separately for % each feature. % % Hint: You might find the 'mean' and 'std' functions useful. % mu = mean(X,1); sigma = std(X); i = 1; le = size(X, 2); while i <= le, X_norm(:,i) = (X(:,i) - mu(1,i))/sigma(1,i); i = i + 1; end; % ============================================================ end
featureNormalize()主要是对数据进行归一化,归一化到正态分布,对原始数据进行缩放处理,限制在一定的范围内。一般指正态化,即均值为0,方差为1。即使数据不符合正态分布,也可以采用这种方式方法,标准化后的数据有正有负。
function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the % parameter for linear regression to fit the data points in X and y % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta % You should set J to the cost. J=sum((X*theta-y).^2)/(2*m); % ========================================================================= end
unction [theta, <span style="color:#ff0000;">J_history</span>] = gradientDescent(X, y, theta, alpha, num_iters) %GRADIENTDESCENT Performs gradient descent to learn theta % theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by % taking num_iters gradient steps with learning rate alpha % Initialize some useful values m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ====================== % Instructions: Perform a single gradient step on the parameter vector % theta. % % Hint: While debugging, it can be useful to print out the values % of the cost function (computeCost) and gradient here. % theta = theta - alpha * (X' * (X * theta - y)) / m; <span style="color:#ff0000;">J_history(iter) = computeCost(X, y, theta); </span> % ============================================================ % Save the cost J in every iteration <span style="color:#ff0000;">J_history(iter) = computeCost(X, y, theta);</span> end end
gradientDescent-梯度下降法:
标红线的地方,是比较巧妙的地方,梯度下降法的过程中,存储了每次迭代得到的代价函数,就可以画出代价函数关于迭代次数的学习曲线。
详情,可以参考Andrew Ng couresa machine learning的课程week2 联系提供的代码框架
https://class.coursera.org/ml-008/assignment