redis基本数据结构之压缩列表

       压缩列表(ziplist)时列表键和哈希键的底层实现之一。压缩列表时redis为了节约内存而开发的,是由一系列特殊编码的连续内存块组成的顺序型(sequential)数据结构。一个压缩列表可以包含任意多个节点(entry),每个节点可以保存一个字节数组或者一个整数值。

     接下来给大家展示以下压缩列表的具体结构:


redis基本数据结构之压缩列表_第1张图片

在表中列出了空的压缩列表和非空的压缩列表的具体是如何存储的。

   下面我们来看redis是如何对压缩列表定义的:


/* The ziplist is a specially encoded dually linked list that is designed
 * to be very memory efficient. 
 * 
 * Ziplist 是为了尽可能地节约内存而设计的特殊编码双端链表。
 *
 * It stores both strings and integer values,
 * where integers are encoded as actual integers instead of a series of
 * characters. 
 *
 * Ziplist可以存储字符串值和整数值,
 * 其中,整数值被保存为整数,而不是字符数组。
 *
 * It allows push and pop operations on either side of the list
 * in O(1) time. However, because every operation requires a reallocation of
 * the memory used by the ziplist, the actual complexity is related to the
 * amount of memory used by the ziplist.
 *
 *  Ziplist允许在列表的两端进行o(1)复杂度的push和pop操作。
 *  但是,因为这些操作都需要对整个Ziplist进行内存分配
 *  所以实际的复杂度和ziplist占用的内存大小有关。
 * ----------------------------------------------------------------------------
 *
 * ZIPLIST OVERALL LAYOUT:
 * Ziplist整体布局:
 *
 * The general layout of the ziplist is as follows:
 * 以下是ziplist的一般布局:
 *
 * <zlbytes><zltail><zllen><entry><entry><zlend>
 *
 * <zlbytes> is an unsigned integer to hold the number of bytes that the
 * ziplist occupies. This value needs to be stored to be able to resize the
 * entire structure without the need to traverse it first.
 *
 * <zlbytes>是一个无符号整数,保存着ziplist使用的内存数量。
 * 通过这个值,程序员可以直接对ziplist的内存大小进行调整
 *
 * <zltail> is the offset to the last entry in the list. This allows a pop
 * operation on the far side of the list without the need for full traversal.
 *
 * <zltail>保存着到达列表中最后一个节点的偏移量
 * 这个偏移量使得对表尾的pop操作可以在无需遍历整个列表的情况下进行。
 *
 * <zllen> is the number of entries.When this value is larger than 2**16-2,
 * we need to traverse the entire list to know how many items it holds.
 *
 * <zllen>保存着列表中的节点的数量,
 * 当zllen保存的值大于65536时,
 * 程序需要遍历整个列表才能知道列表实际包含了多少个节点
 *
 * <zlend> is a single byte special value, equal to 255, which indicates the
 * end of the list.
 * 
 * <zlend>的长度为1字节,值为255,标识列表的末尾
 *
 * ZIPLIST ENTRIES:
 * ZIPLIST 节点:
 *
 * Every entry in the ziplist is prefixed by a header that contains two pieces
 * of information. First, the length of the previous entry is stored to be
 * able to traverse the list from back to front. Second, the encoding with an
 * optional string length of the entry itself is stored.
 *
 * 每个ziplist节点的前面都带有一个header,这个header包含两部分信息:
 *   (1)前置节点的长度,在程序从后向前遍历时使用,
 *   (2)当前节点所保存的值的类型和长度
 *
 * The length of the previous entry is encoded in the following way:
 * If this length is smaller than 254 bytes, it will only consume a single
 * byte that takes the length as value. When the length is greater than or
 * equal to 254, it will consume 5 bytes. The first byte is set to 254 to
 * indicate a larger value is following. The remaining 4 bytes take the
 * length of the previous entry as value.
 *
 * 编码前置节点的长度的方法如下:
 *    (1)如果前置节点的长度小于254字节,那么程序将使用1个字节来保存这个长度
 *    (2)如果前置节点的长度大于等于254字节,那么程序将使用5个字节来保存这个长度值:
 *        (a)第一个字节的值被设为254,用于标识这是一个5字节长的长度值
 *        (b)之后的4个字节则用于保存前置节点的实际长度。
 *
 * The other header field of the entry itself depends on the contents of the
 * entry. When the entry is a string, the first 2 bits of this header will hold
 * the type of encoding used to store the length of the string, followed by the
 * actual length of the string. When the entry is an integer the first 2 bits
 * are both set to 1. The following 2 bits are used to specify what kind of
 * integer will be stored after this header. An overview of the different
 * types and encodings is as follows:
 *
 * header另一部分的内容和节点所保存的值有关。
 *
 * (1)如果节点保存的是字符串值,
 *      那么这部分的header的头2个位保存编码字符串长度所使用的类型,
 *      而之后跟着的内容则是字符串的实际长度
 *
 * |00pppppp| - 1 byte
 *      String value with length less than or equal to 63 bytes (6 bits).
 *      字符串的长度小于或等于63字节。
 * |01pppppp|qqqqqqqq| - 2 bytes
 *      String value with length less than or equal to 16383 bytes (14 bits).
 *      字符串的长度小于或等于16383字节
 * |10______|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
 *      String value with length greater than or equal to 16384 bytes.
 *      字符串的长度大于或等于16384个字节。
 *
 * (2)如果节点保存的是整数,
 *      那么这部分header的头2位都被设置为1,
 *      而之后跟着的2位则用于标识所保存的整数的类型。
 *
 * |11000000| - 1 byte
 *      Integer encoded as int16_t (2 bytes).
 *      节点的值为int16_t类型的整数,长度为2个字节
 * |11010000| - 1 byte
 *      Integer encoded as int32_t (4 bytes).
 *      节点的值为int32_t类型的整数,长度为4个字节
 * |11100000| - 1 byte
 *      Integer encoded as int64_t (8 bytes).
 *      节点的值为int64_t类型的整数,长度为8个字节
 * |11110000| - 1 byte
 *      Integer encoded as 24 bit signed (3 bytes).
 *      节点的值为24位(3字节)长的整数
 * |11111110| - 1 byte
 *      Integer encoded as 8 bit signed (1 byte).
 *      节点的值为8位(1字节)长的整数
 * |1111xxxx| - (with xxxx between 0000 and 1101) immediate 4 bit integer.
 *      Unsigned integer from 0 to 12. The encoded value is actually from
 *      1 to 13 because 0000 and 1111 can not be used, so 1 should be
 *      subtracted from the encoded 4 bit value to obtain the right value.
 *      节点的值介于0至12之间的无符号数,
 *      因为0000和1111都不能使用,所以位的实际值将是1至13。
 *      程序在取得这4位的值之后,还需要减去1,才能计算出正确的值。
 *      比如说,如果位的值位为0001 = 1,那么程序返回的值将是1- 1=0。
 * |11111111| - End of ziplist.
 *      ziplist的结尾标志。
 * All the integers are represented in little endian byte order.
 *
 * 所有的整数都表示为小端字节序。
 * ----------------------------------------------------------------------------
 *
 * Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
 * Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include "zmalloc.h"
#include "util.h"
#include "ziplist.h"
#include "endianconv.h"
#include "redisassert.h"

/*
 * ziplist末端标识符,以及5字节标识符
 *
 *
 * */
#define ZIP_END 255
#define ZIP_BIGLEN 254

/* Different encoding/length possibilities */
/*
 * 字符串编码和整数编码的掩码
 *
 * */
#define ZIP_STR_MASK 0xc0
#define ZIP_INT_MASK 0x30

/*
 * 字符串编码类型
 *
 * */
//编码长度1字节,长度小于或等于63字节的字节数组
#define ZIP_STR_06B (0 << 6)
//编码长度为2字节,长度小于等于16383字节的字节数组
#define ZIP_STR_14B (1 << 6)
//编码长度为5字节,长度小于等于4294967295的字节数组
#define ZIP_STR_32B (2 << 6)

/*
 * 整数编码类型
 *
 *
 * */
//编码长度1字节,int16_t类型的整数
#define ZIP_INT_16B (0xc0 | 0<<4)
//编码长度1字节,int32_t类型的整数
#define ZIP_INT_32B (0xc0 | 1<<4)
//编码长度1字节,int64_t类型的整数
#define ZIP_INT_64B (0xc0 | 2<<4)
//编码长度1字节,24位有符号的整数
#define ZIP_INT_24B (0xc0 | 3<<4)
//8位有符号整数
#define ZIP_INT_8B 0xfe


/* 4 bit integer immediate encoding */
/*
 * 4位整数编码的掩码和类型
 *
 * */
#define ZIP_INT_IMM_MASK 0x0f
#define ZIP_INT_IMM_MIN 0xf1    /* 11110001 */
#define ZIP_INT_IMM_MAX 0xfd    /* 11111101 */
#define ZIP_INT_IMM_VAL(v) (v & ZIP_INT_IMM_MASK)

/*
 * 24位整数的最大值和最小值
 * */
#define INT24_MAX 0x7fffff
#define INT24_MIN (-INT24_MAX - 1)

/* Macro to determine type */
/*
 * 查看给定编码enc是否字符串编码
 *
 * */
#define ZIP_IS_STR(enc) (((enc) & ZIP_STR_MASK) < ZIP_STR_MASK)

/* Utility macros */
/*
 * ziplist属性宏
 *
 * */
//定位到ziplist的bytes属性,该属性记录了整个ziplist所占用的内存字节数
//用于取出bytes属性的现有值,或者bytes属性赋予新值
#define ZIPLIST_BYTES(zl)       (*((uint32_t*)(zl)))
//定位到ziplist的offset属性,该属性记录了到达表尾节点的偏移量
//用于取出offset属性的现有值,或者为offset属性赋予新值
#define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
//定位到ziplist的length属性,该属性记录了ziplist包含的节点数量
//用于取出length属性的现有值,或者为length属性赋予新值
#define ZIPLIST_LENGTH(zl)      (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
//返回ziplist表头的大小
#define ZIPLIST_HEADER_SIZE     (sizeof(uint32_t)*2+sizeof(uint16_t))
//返回指向ziplist第一个节点(的起始位置)的指针
#define ZIPLIST_ENTRY_HEAD(zl)  ((zl)+ZIPLIST_HEADER_SIZE)
//返回指向ziplist的最后一个节点(的起始位置)的指针
#define ZIPLIST_ENTRY_TAIL(zl)  ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
//返回指向ziplist末端ZIP_END(的起始位置)的指针
#define ZIPLIST_ENTRY_END(zl)   ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)


  上述主要对压缩列表的各个属性做了解释,还有对于字符串和整数的编码,定义了redis的属性宏。。。

    下面我们来看压缩列表节点的定义:

typedef struct zlentry {
    //prevrawlen:前置节点的长度
    //prevrawlensize:编码prevrawlen所需的字节大小
    unsigned int prevrawlensize, prevrawlen;
    //len:当前节点的长度
    //lensize:编码len所需的字节大小
    unsigned int lensize, len;
    //当前节点header的大小
    //等于prevrawlensize + lensize
    unsigned int headersize;
    //当前节点所使用的编码类型
    unsigned char encoding;
    //指向当前节点的指针
    unsigned char *p;
} zlentry;

/* Extract the encoding from the byte pointed by 'ptr' and set it into
 * 'encoding'. */
/*
 * 从ptr中取出节点值的编码类型,并将它保存在encoding变量中。
 *
 * */
#define ZIP_ENTRY_ENCODING(ptr, encoding) do {  \
    (encoding) = (ptr[0]); \
    if ((encoding) < ZIP_STR_MASK) (encoding) &= ZIP_STR_MASK; \
} while(0)
/*
 * 增加ziplist的节点数
 *
 *
 * */
#define ZIPLIST_INCR_LENGTH(zl,incr) { \
    if (ZIPLIST_LENGTH(zl) < UINT16_MAX) \
        ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \
}
上述就是redis对于压缩列表节点的定义。

  下面我们来看redis对于一下接口的具体实现:

/* Return bytes needed to store integer encoded by 'encoding' */
/*
 * 返回保存encoding编码的值所需要的字节数量
 *
 * */
static unsigned int zipIntSize(unsigned char encoding) {
    switch(encoding) {
    case ZIP_INT_8B:  return 1;
    case ZIP_INT_16B: return 2;
    case ZIP_INT_24B: return 3;
    case ZIP_INT_32B: return 4;
    case ZIP_INT_64B: return 8;
    default: return 0; /* 4 bit immediate */
    }
    assert(NULL);
    return 0;
}

/* Encode the length 'rawlen' writing it in 'p'. If p is NULL it just returns
 * the amount of bytes required to encode such a length. */
/*
 * 编码节点的长度值为l,并将它写入到p中,然后返回编码l所需的字节数量。
 *
 * 如果p为NULL,那么仅返回编码l所需的字节数量,不进行写入
 *
 * */
static unsigned int zipEncodeLength(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
    unsigned char len = 1, buf[5];
    //判断encoding是否为字符串编码
    if (ZIP_IS_STR(encoding)) {
        /* Although encoding is given it may not be set for strings,
         * so we determine it here using the raw length. */
        if (rawlen <= 0x3f) {
            //rawlen 长度小于等于63字节的字节数组
            //编码长度为1个字节
            if (!p) return len;
            //程序执行到这一步时,说明p不为空,要将编码节点的长度值写入p中
            //ZIP_STR_06B == 00bbbbbb 
            buf[0] = ZIP_STR_06B | rawlen;
        } else if (rawlen <= 0x3fff) {
            //rawlen长度小于等于16383字节的字节数组
            //编码长度为2个字节
            len += 1;
            if (!p) return len;
            buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
            buf[1] = rawlen & 0xff;
        } else {
            //否则,长度小于等于4294967295的字节数组
            //编码长度为5个字节
            len += 4;
            if (!p) return len;
            buf[0] = ZIP_STR_32B;
            buf[1] = (rawlen >> 24) & 0xff;
            buf[2] = (rawlen >> 16) & 0xff;
            buf[3] = (rawlen >> 8) & 0xff;
            buf[4] = rawlen & 0xff;
        }
    } else {
        //编码整数
        /* Implies integer encoding, so length is always 1. */
        if (!p) return len;
        buf[0] = encoding;
    }

    /* Store this length at p */
    //将编码的长度写入p
    memcpy(p,buf,len);
    //返回编码所需的字节数
    return len;
}

/* Decode the length encoded in 'ptr'. The 'encoding' variable will hold the
 * entries encoding, the 'lensize' variable will hold the number of bytes
 * required to encode the entries length, and the 'len' variable will hold the
 * entries length. 
 *
 * 解码ptr指针,取出列表节点的相关信息,并将它们保存在以下变量中:
 *
 *  -encoding 保存节点值的编码类型
 *
 *  -lensize 保存编码节点长度所需的字节数
 *
 *  -len 保存节点所需的长度
 *
 * */
#define ZIP_DECODE_LENGTH(ptr, encoding, lensize, len) do {                    \
    //取出节点值的编码类型,并保存到encoding变量中
    ZIP_ENTRY_ENCODING((ptr), (encoding));                                     \
    if ((encoding) < ZIP_STR_MASK) {                                           \
        //字符串编码
        if ((encoding) == ZIP_STR_06B) {                                       \
            //如果编码为00bbbbbb
            //编码节点长度所需要的字节数为1
            (lensize) = 1;                                                     \
            //保存节点所需的长度
            (len) = (ptr)[0] & 0x3f;                                           \
        } else if ((encoding) == ZIP_STR_14B) {                                \
            //如果编码为01bbbbbb
            //编码节点长度所需要的字节数为2
            (lensize) = 2;                                                     \
            //保存节点所需的长度
            (len) = (((ptr)[0] & 0x3f) << 8) | (ptr)[1];                       \
        } else if (encoding == ZIP_STR_32B) {                                  \
            //如果编码为10_ _ _ _ _ _ _ 
            //编码节点长度所需要的字节数为5
            (lensize) = 5;                                                     \
            (len) = ((ptr)[1] << 24) |                                         \
                    ((ptr)[2] << 16) |                                         \
                    ((ptr)[3] <<  8) |                                         \
                    ((ptr)[4]);                                                \
        } else {                                                               \
            //否则直接退出
            assert(NULL);                                                      \
        }                                                                      \
    } else {                                                                   \
        //编码整数
        (lensize) = 1;                                                         \
        //保存encoding编码的值所需的字节长度
        (len) = zipIntSize(encoding);                                          \

    }                                                                          \
} while(0);

/* Encode the length of the previous entry and write it to "p". Return the
 * number of bytes needed to encode this length if "p" is NULL. 
 *
 * 对前置节点的长度len进行编码,并将它写入到p中,
 * 然后返回编码len所需的字节数量
 *
 * 如果p为空,那么不进行写入,仅返回编码len所需的字节数量
 *
 * */
static unsigned int zipPrevEncodeLength(unsigned char *p, unsigned int len) {
    if (p == NULL) {
        //p为空时,仅返回编码len所需的字节数量
        //如果len < 254时,编码len仅需要1个字节
        return (len < ZIP_BIGLEN) ? 1 : sizeof(len)+1;
    } else {
        //当p不为空时
        if (len < ZIP_BIGLEN) {
            //(1)如果len < 254时
            p[0] = len;
            return 1;
        } else {
            //(2)如果len > 254时
            //第一个字节被设置为254
            p[0] = ZIP_BIGLEN;
            //将len的值拷贝到字符串从p+1开始的位置
            memcpy(p+1,&len,sizeof(len));
            //大小端进行转换
            memrev32ifbe(p+1);
            //返回编码长度
            return 1+sizeof(len);
        }
    }
}

/* Encode the length of the previous entry and write it to "p". This only
 * uses the larger encoding (required in __ziplistCascadeUpdate). 
 *
 * 将原本只需要1个字节来保存的前置节点长度len编码至一个5字节长的header中
 *
 * */
static void zipPrevEncodeLengthForceLarge(unsigned char *p, unsigned int len) {
    //如果p为空,则直接返回
    if (p == NULL) return;
    //当p不为空时,首先将p[0]设置为254,用于标识5字节长度标识
    p[0] = ZIP_BIGLEN;
    //内存拷贝,将len写入字符串p + 1的位置
    memcpy(p+1,&len,sizeof(len));
    //大小端的转换
    memrev32ifbe(p+1);
}

/* Decode the number of bytes required to store the length of the previous
 * element, from the perspective of the entry pointed to by 'ptr'.
 *
 * 解码ptr指针,取出解码前置节点长度的字节数,并将它保存到prevlensize变量中。
 *
 * */
#define ZIP_DECODE_PREVLENSIZE(ptr, prevlensize) do {                          \
    if ((ptr)[0] < ZIP_BIGLEN) {                                               \
        //当ptr[0]小于254时,说明前置节点的字节数为1
        (prevlensize) = 1;                                                     \
    } else {                                                                   \
        //否则说明前置节点的字节数为5
        (prevlensize) = 5;                                                     \

    }                                                                          \
} while(0);

/* Decode the length of the previous element, from the perspective of the entry
 * pointed to by 'ptr'. 
 *
 * 解码pre指针,
 * 取出编码前置节点长度所需的字节数,并将它保存到prevlensize变量中。
 *
 * 然后根据prevlensize,从ptr中取出前置节点的长度值,
 * 并将这个长度保存到prevlen变量中。
 * */
#define ZIP_DECODE_PREVLEN(ptr, prevlensize, prevlen) do {                     \
    //获取编码前置节点长度所需的字节数,并将其保存在prevlensize中
    ZIP_DECODE_PREVLENSIZE(ptr, prevlensize);                                  \
    if ((prevlensize) == 1) {                                                  \
        //如果所需字节数为1,则说明其长度值小于254,仅用一个字节就可以编码
        (prevlen) = (ptr)[0];                                                  \
    } else if ((prevlensize) == 5) {                                           \
        //当所需字节数为5时,则说明其长度大于等于254。
        assert(sizeof((prevlensize)) == 4);                                    \
        //如果前置节点的字节数为4时,将ptr从下标为1到4的内容拷贝到prevlen内
        memcpy(&(prevlen), ((char*)(ptr)) + 1, 4);                             \
        //进行大小端转换
        memrev32ifbe(&prevlen);                                                \
    }                                                                          \
} while(0);

/* Return the difference in number of bytes needed to store the length of the
 * previous element 'len', in the entry pointed to by 'p'. 
 *
 * 计算编码新的前置节点长度len所需的字节数
 * 减去编码p原来的前置节点长度所需的字节数之差
 * */
static int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
    unsigned int prevlensize;
    //取出前置节点长度所需的字节数,并将它保存在prevlensize变量中
    ZIP_DECODE_PREVLENSIZE(p, prevlensize);
    //计算编码len所需的字节数,然后进行减法
    return zipPrevEncodeLength(NULL, len) - prevlensize;
}

/* Return the total number of bytes used by the entry pointed to by 'p'. 
 *
 * 返回指针p所指向的节点占用的字节数总和
 *
 * */
static unsigned int zipRawEntryLength(unsigned char *p) {
    unsigned int prevlensize, encoding, lensize, len;
    //解码p指针,取出编码前置节点长度所需的字节数,并将它保存到prevlensize中。
    ZIP_DECODE_PREVLENSIZE(p, prevlensize);
    //encoding:用于保存当前节点的编码类型
    //lensize:用于保存当前节点长度所需的字节数
    //len:保存当前节点长度
    ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
    //返回占用的总的字节总和
    return prevlensize + lensize + len;
}

/* Check if string pointed to by 'entry' can be encoded as an integer.
 * Stores the integer value in 'v' and its encoding in 'encoding'.
 *
 * 检查entry中指定的字符串能否被编码为整数
 *
 * 如果可以的话,
 * 将编码的整数保存在指针v的值中,并将编码方式保存在指针encoding的值中。
 *
 *
 *
 * */
static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
    long long value;
    //忽略太长或太短的字符串
    if (entrylen >= 32 || entrylen == 0) return 0;
    //将一个字符串转换为long long 类型
    if (string2ll((char*)entry,entrylen,&value)) {
        /* Great, the string can be encoded. Check what's the smallest
         * of our encoding types that can hold this value. */
        //当转换成功时,
        //以从大到小的顺序检查适合value的编码方式
        if (value >= 0 && value <= 12) {
            *encoding = ZIP_INT_IMM_MIN+value;
        } else if (value >= INT8_MIN && value <= INT8_MAX) {
            *encoding = ZIP_INT_8B;
        } else if (value >= INT16_MIN && value <= INT16_MAX) {
            *encoding = ZIP_INT_16B;
        } else if (value >= INT24_MIN && value <= INT24_MAX) {
            *encoding = ZIP_INT_24B;
        } else if (value >= INT32_MIN && value <= INT32_MAX) {
            *encoding = ZIP_INT_32B;
        } else {
            *encoding = ZIP_INT_64B;
        }
        //使用指针记录value的值
        *v = value;
        //返回转换成功的标识
        return 1;
    }
    //转换失败
    return 0;
}

/* Store integer 'value' at 'p', encoded as 'encoding' 
 *
 * 以encoding指定的编码方式,将整数值value写入到p
 *
 * */
static void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
    int16_t i16;
    int32_t i32;
    int64_t i64;
    if (encoding == ZIP_INT_8B) {
        //当编码方式为8为有符号的整数时
        //编码长度只需要一个字节,
        ((int8_t*)p)[0] = (int8_t)value;
    } else if (encoding == ZIP_INT_16B) {
        //当编码方式为int32_t类型的整数时,
        //编码长度为1个字节
        //i16用于保存int16_t类型的整数
        i16 = value;
        //内存拷贝,将i16的值拷贝到字符串指针p中
        memcpy(p,&i16,sizeof(i16));
        //进行大小端转换
        memrev16ifbe(p);
    } else if (encoding == ZIP_INT_24B) {
        //当编码方式为24位有符号数时,
        i32 = value<<8;
        memrev32ifbe(&i32);
        memcpy(p,((uint8_t*)&i32)+1,sizeof(i32)-sizeof(uint8_t));
    } else if (encoding == ZIP_INT_32B) {
        //当编码方式为int32_t类型的整数时
        i32 = value;
        //内存拷贝
        memcpy(p,&i32,sizeof(i32));
        //大小端转换
        memrev32ifbe(p);
    } else if (encoding == ZIP_INT_64B) {
        //当编码方式为int64_t类型时,
        i64 = value;
        //内存拷贝
        memcpy(p,&i64,sizeof(i64));
        //大小端转换
        memrev64ifbe(p);
    } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
        /* Nothing to do, the value is stored in the encoding itself. */
        //否则,什么也不做
    } else {
        assert(NULL);
    }
}

/* Read integer encoded as 'encoding' from 'p' 
 *
 * 以encoding指定的编码方式,读取并返回指针p中的整数值
 *
 * */
static int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
    int16_t i16;
    int32_t i32;
    int64_t i64, ret = 0;
    if (encoding == ZIP_INT_8B) {
        //当编码方式为8位的有符号整数时,
        //其编码长度为1个字节
        //首先将指针p转化为int8_t的类型
        //然后将第一个字节里的内容赋给ret
        ret = ((int8_t*)p)[0];
    } else if (encoding == ZIP_INT_16B) {
        //当编码方式为int16_t类型时,
        //进行内存拷贝
        memcpy(&i16,p,sizeof(i16));
        //大小端转换
        memrev16ifbe(&i16);
        ret = i16;
    } else if (encoding == ZIP_INT_32B) {
        memcpy(&i32,p,sizeof(i32));
        memrev32ifbe(&i32);
        ret = i32;
    } else if (encoding == ZIP_INT_24B) {
        i32 = 0;
        memcpy(((uint8_t*)&i32)+1,p,sizeof(i32)-sizeof(uint8_t));
        memrev32ifbe(&i32);
        ret = i32>>8;
    } else if (encoding == ZIP_INT_64B) {
        memcpy(&i64,p,sizeof(i64));
        memrev64ifbe(&i64);
        ret = i64;
    } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
        ret = (encoding & ZIP_INT_IMM_MASK)-1;
    } else {
        assert(NULL);
    }
    return ret;
}

/* Return a struct with all information about an entry. 
 *
 * 将p所指向的列表节点的信息全保存到zlentry中,并返回该zlentry
 *
 * */
static zlentry zipEntry(unsigned char *p) {
    zlentry e;
    //e.prevrawlensize保存着编码前一个节点的长度所需的字节数
    //e.prevrawlen保存着前一个节点的长度
    //调用ZIP_DECODE_PREVLEN 对p进行解码,取出编码前置节点长度所需的字节数和长度值分别保存在e.prevrawlensize和e.prevrawlen中
    ZIP_DECODE_PREVLEN(p, e.prevrawlensize, e.prevrawlen);

    //调用ZIP_DECODE_LENGTH 对p进行解码,
    //e.encoding 保存节点值的编码类型
    //e.lensize保存编码节点值长度所需的字节数
    //e.len保存节点值的长度
    ZIP_DECODE_LENGTH(p + e.prevrawlensize, e.encoding, e.lensize, e.len);
    //计算头节点的字节数
    e.headersize = e.prevrawlensize + e.lensize;
    //记录指针
    e.p = p;
    return e;
}

上述的接口主要是一些静态的函数,只能在本文件内使用。

 下面我们看几个操作压缩列表的函数:

      (1)创建一个空的新的ziplist:

/* Create a new empty ziplist.
 *
 *创建并返回一个新的ziplist
 * */
unsigned char *ziplistNew(void) {


    //ZIPLIST_HEADER_SIZE是ziplist表头的大小
    //1 字节是表末端ZIP_END的大小
    unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
    
    //为表头和表尾分配空间
    unsigned char *zl = zmalloc(bytes);

    //初始化表的属性
    ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
    ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
    ZIPLIST_LENGTH(zl) = 0;

    //设置表末端
    zl[bytes-1] = ZIP_END;

    //返回空的新的ziplist
    return zl;
}

(2)压缩列表的删除:

/* Resize the ziplist.
 *
 * 调整ziplist的大小为len个字节
 *
 *当ziplist原有的大小小于len时,扩展ziplist不会改变ziplist原有的元素
 * */
static unsigned char *ziplistResize(unsigned char *zl, unsigned int len) {


    //用zrealloc扩展时不改变现有元素
    zl = zrealloc(zl,len);

    //更新bytes属性    
    ZIPLIST_BYTES(zl) = intrev32ifbe(len);

    //重新设置表末端
    zl[len-1] = ZIP_END;
    return zl;
}

/* When an entry is inserted, we need to set the prevlen field of the next
 * entry to equal the length of the inserted entry. It can occur that this
 * length cannot be encoded in 1 byte and the next entry needs to be grow
 * a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
 * because this only happens when an entry is already being inserted (which
 * causes a realloc and memmove). However, encoding the prevlen may require
 * that this entry is grown as well. This effect may cascade throughout
 * the ziplist when there are consecutive entries with a size close to
 * ZIP_BIGLEN, so we need to check that the prevlen can be encoded in every
 * consecutive entry.
 * 
 * 当一个新节点添加到某个节点之前的时候,
 * 如果原节点的header空间不足以保存新节点的长度,
 * 那么就需要对原节点的header空间进行扩展(从1字节扩展到5字节)。
 *
 * 但是,当对原节点进行扩展之后,原节点的下一个节点的prevlen可能出现空间不足,
 * 这种情况在多个连续节点的长度都接近于ZIP_BIGLEN时可能发生。
 *
 * 这个函数就用于检查并修复后续节点的空间问题
 *
 * Note that this effect can also happen in reverse, where the bytes required
 * to encode the prevlen field can shrink. This effect is deliberately ignored,
 * because it can cause a "flapping" effect where a chain prevlen fields is
 * first grown and then shrunk again after consecutive inserts. Rather, the
 * field is allowed to stay larger than necessary, because a large prevlen
 * field implies the ziplist is holding large entries anyway.
 *
 * 反过来说,
 * 因为节点的长度变小引起的连续缩小也可能出现,
 *
 * The pointer "p" points to the first entry that does NOT need to be
 * updated, i.e. consecutive fields MAY need an update. */
static unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {

    //curlen用于记录ziplist所占用的内存的字节数
    size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), rawlen, rawlensize;
    size_t offset, noffset, extra;
    unsigned char *np;
    //定义ziplist结构体
    zlentry cur, next;

    while (p[0] != ZIP_END) {

        //将p所指向的列表节点的信息全部保存到cur中
        cur = zipEntry(p);
        //当前p节点的整个entry的字节数
        rawlen = cur.headersize + cur.len;
        //调用函数zipPrevEncodeLength,由于第一个参数为NULL,则仅返回编码len所需的字节数量
        //存储rawlen需要的字节数
        rawlensize = zipPrevEncodeLength(NULL,rawlen);

        /* Abort if there is no next entry. */
        //如果已经没有后续空间需要更新了,跳出
        //到达表尾
        if (p[rawlen] == ZIP_END) break;

        //取出后续节点的信息,保存到next结构中
        next = zipEntry(p+rawlen);

        /* Abort when "prevlen" has not changed. */
        //后续节点编码当前节点的空间已经足够,无需再进行任何处理,跳出
        //可以证明,只要遇到一个空间足够的节点,
        //那么这个节点之后的所有节点的空间都是足够的
        if (next.prevrawlen == rawlen) break;

        if (next.prevrawlensize < rawlensize) {
            /* The "prevlen" field of "next" needs more bytes to hold
             * the raw length of "cur". */
            //执行到这里,表示next空间的大小不足以编码cur的长度
            //所以程序需要对next节点的(header部分)空间进行扩展

            //记录p的偏移量
            offset = p-zl;
            //计算需要增加的字节数
            extra = rawlensize-next.prevrawlensize;
            //调用ziplistResize函数,调整ziplist的大小为len字节
            //当ziplist原有的大小小于len时,扩展ziplist不会改变ziplist原有的元素
            zl = ziplistResize(zl,curlen+extra);
            p = zl+offset;

            /* Current pointer and offset for next element. */
            //新的下一个节点的首地址
            np = p+rawlen;
            //新节点的偏移量
            noffset = np-zl;

            /* Update tail offset when next element is not the tail element. */
            if ((zl+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) != np) {
                //ZIPLIST_TAIL_OFFSET(zl):记录到达表尾节点的偏移量
                //当 np不是尾节点时
                //更新zl的尾节点的偏移量
                ZIPLIST_TAIL_OFFSET(zl) =
                    intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra);
            }
            //当next节点不是表尾节点时,更新列表到表尾节点的偏移量
            //
            //不用更新的情况(next为表尾节点):
            //
            //  |    | next |     ==>  |    | new next      |
            //       ^                      ^
            //       |                      |
            //      tail                   tail
            //
            // 需要更新的情况(next不是表位节点):
            //
            // | next |    |      ==>  | new next     |    |
            //        ^                       ^
            //        |                       |
            //    old  tail                old tail
            // 更新之后:
            // | new next    |    |
            //               ^
            //               |
            //            new tail             
            //
            /* Move the tail to the back. */

            //np + rawlensize :新的下一个节点存储自身数据的首地址
            //np + next.prevrawlensize :旧的下一个节点存储自身数据的首地址

            //向后移动cur节点之后的数据,为cur的新header腾出空间
            //
            //例:
            //  | header | value |  ==> | header |    | value |  ==> | header       | value |
            //                                   |<-->|
            //                                 为新header腾出的空间
            memmove(np+rawlensize,
                np+next.prevrawlensize,
                curlen-noffset-next.prevrawlensize-1);
            //对前置节点p的长度进行编码写入到np中
            zipPrevEncodeLength(np,rawlen);

            /* Advance the cursor */
            //移动指针,处理下一个节点
            p += rawlen;
            //更新ziplist所占用的字节数
            curlen += extra;
        } else {
            //执行到这里说明next节点编码前置节点header空间有5字节
            //而编码rawlen只需要1字节
            //但是程序不会对next进行缩小
            //所以这里只将rawlen写入5字节的header中算了
            if (next.prevrawlensize > rawlensize) {
                /* This would result in shrinking, which we want to avoid.
                 * So, set "rawlen" in the available bytes. */
                zipPrevEncodeLengthForceLarge(p+rawlen,rawlen);
            } else {
                //运行到这正好说明cur节点的长度正好可以编码next节点的header中
                zipPrevEncodeLength(p+rawlen,rawlen);
            }

            /* Stop here, as the raw length of "next" has not changed. */
            //后续节点不用扩展
            break;
        }
    }
    return zl;
}

/* Delete "num" entries, starting at "p". Returns pointer to the ziplist. 
 *
 * 从位置p开始,连续删除num个节点
 *
 * 函数返回值为处理删除操作之后的ziplist
 *
 * */
static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
    unsigned int i, totlen, deleted = 0;
    size_t offset;
    int nextdiff = 0;
    zlentry first, tail;
    //使用first记录节点p的所有信息
    first = zipEntry(p);
    //计算被删除节点的总个数
    for (i = 0; p[0] != ZIP_END && i < num; i++) {
        //zipRawEntryLength:用于计算节点p所占的节点数
        p += zipRawEntryLength(p);
        deleted++;
    }
    //totlen用于记录所有被删除节点占用的内存字节数
    totlen = p-first.p;
    if (totlen > 0) {
        if (p[0] != ZIP_END) {

            //执行到这里说明被删除的节点之后还有节点存在


            /* Storing `prevrawlen` in this entry may increase or decrease the
             * number of bytes required compare to the current `prevrawlen`.
             * There always is room to store this, because it was previously
             * stored by an entry that is now being deleted. */

            //因为位于被删除节点范围之后的第一个节点的header部分的大小
            //可能容纳不了新的前置节点,所以需要计算新旧前置节点的字节数差
            nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
            //将指针p后退nextdiff个字节,为新的header空出空间
            p -= nextdiff;
            //将first前置节点的长度编码至p中
            zipPrevEncodeLength(p,first.prevrawlen);

            /* Update offset for tail */
            //更新到达表尾的偏移量
            ZIPLIST_TAIL_OFFSET(zl) =
                intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);

            /* When the tail contains more than one entry, we need to take
             * "nextdiff" in account as well. Otherwise, a change in the
             * size of prevlen doesn't have an effect on the *tail* offset. */

            //如果被删除节点之后,有多于一个节点
            //那么程序需要将nextdiff记录的字节数也计算到表尾偏移量中
            //这样才能让表尾的偏移量正确对齐表尾节点
            tail = zipEntry(p);
            if (p[tail.headersize+tail.len] != ZIP_END) {
                ZIPLIST_TAIL_OFFSET(zl) =
                   intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
            }

            /* Move tail to the front of the ziplist */
            //从表尾向表头移动数据,覆盖被删除节点的数据
            memmove(first.p,p,
                intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1);
        } else {
            //执行到这里时,说明被删除节点之后没有其他的节点
            /* The entire tail was deleted. No need to move memory. */
            //更新表尾节点的偏移量
            ZIPLIST_TAIL_OFFSET(zl) =
                intrev32ifbe((first.p-zl)-first.prevrawlen);
        }

        //缩小并更新ziplist的长度
        /* Resize and update length */
        offset = first.p-zl;
        zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
        ZIPLIST_INCR_LENGTH(zl,-deleted);
        p = zl+offset;

        /* When nextdiff != 0, the raw length of the next entry has changed, so
         * we need to cascade the update throughout the ziplist */
        //如果p所指向的节点的大小已经变更,那么进行级联更新
        //检查p之后的所有节点是否符合ziplist编码的的要求
        if (nextdiff != 0)
            zl = __ziplistCascadeUpdate(zl,p);
    }
    return zl;
}

 <span style="font-size:18px;"> 基于删除函数的封装: 
</span>

/* Delete a single entry from the ziplist, pointed to by *p.
 * Also update *p in place, to be able to iterate over the
 * ziplist, while deleting entries. 
 *
 * 从zl中删除*p所指向的节点,
 * 并且原地更新*p所指向的位置,使得可以在迭代列表的过程中对节点进行删除
 *
 * */
unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
    //因为在_ziplistDelete时会对zl进行内存的重分配
    //而内存的重分配可能会改变zl的内存地址
    //所以需要记录到达*p的偏移量
    //这样可以在删除节点之后通过偏移量来将*p还原到正确的位置
    size_t offset = *p-zl;
    //调用函数_ziplistDelete
    zl = __ziplistDelete(zl,*p,1);

    /* Store pointer to current element in p, because ziplistDelete will
     * do a realloc which might result in a different "zl"-pointer.
     * When the delete direction is back to front, we might delete the last
     * entry and end up with "p" pointing to ZIP_END, so check this. */
    *p = zl+offset;
    return zl;
}

/* Delete a range of entries from the ziplist.
 *
 * 从index索引指定的节点开始,连续地从zl中删除num个节点
 *
 * */
unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num) {
    //根据索引定位到节点
    unsigned char *p = ziplistIndex(zl,index);
    //如果p == NULL 说明根据下标没有定位到,
    //如果不为空时,调用函数_ziplistDelete进行删除
    return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
}

(3)压缩列表的插入:

<span style="font-size:18px;">/* Insert item at "p". 
 *
 * 根据指针p所指定的位置,将长度为slen的字符串s插入到zl中。
 *
 * 函数返回值为完成插入操作之后的ziplist
 *
 * */
static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
    //curlen记录ziplist占用内存总的字节数
    size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;
    unsigned int prevlensize, prevlen = 0;
    size_t offset;
    int nextdiff = 0;
    unsigned char encoding = 0;
    long long value = 123456789; /* initialized to avoid warning. Using a value
                                    that is easy to see if for some reason
                                    we use it uninitialized. */
    zlentry tail;

    /* Find out prevlen for the entry that is inserted. */
    if (p[0] != ZIP_END) {
        //如果p[0]不指向列表末端,说明列表非空,并且p正指向列表中的一个节点
        //调用函数ZIP_DECODE_PREVLEN:解码p指针,
        //使得prevlensize用来保存p节点的前置节点长度所需的字节数
        //prevlen用于保存前置节点的长度
        ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
    } else {
        //如果p指向表尾末端,那么程序需要检查序列是否为:
        //   (1)如果ptail也指向表尾节点ZIP_END,那么列表为空
        //   (2)如果列表不为空,那么ptail将指向列表的最后一个节点
        unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
        if (ptail[0] != ZIP_END) {
            //如果列表不为空时:
            //prevlen用于记录指针ptail所指向的节点占用的字节数总和
            prevlen = zipRawEntryLength(ptail);
        }
    }

    /* See if the entry can be encoded */
    //调用函数zipTryEncoding:用于检查s指向的字符串能否被编码为整数
    //如果可以的话,将编码后的整数保存在指针value中,并将编码方式保存在指针encoding的值中。
    if (zipTryEncoding(s,slen,&value,&encoding)) {
         //当编码成功时,reqlen用于保存encoding编码的值所需的字节数量
        /* 'encoding' is set to the appropriate integer encoding */
        reqlen = zipIntSize(encoding);
    } else {
        //当编码失败时,reqlen用于保存字符串s的长度
        /* 'encoding' is untouched, however zipEncodeLength will use the
         * string length to figure out how to encode it. */
        reqlen = slen;
    }
    /* We need space for both the length of the previous entry and
     * the length of the payload. */
    //调用函数zipPrevEncodeLength 仅返回编码前置节点长度Prevlen所需的字节数量
    reqlen += zipPrevEncodeLength(NULL,prevlen);
    //编码当前节点所需的字节数量
    reqlen += zipEncodeLength(NULL,encoding,slen);

    /* When the insert position is not equal to the tail, we need to
     * make sure that the next entry can hold this entry's length in
     * its prevlen field. */
    //只要新节点不是被添加到列表末端
    //那么程序就需要检查p所指向的节点(的header)能否编码新节点的长度。
    //nextdiff保存了新旧编码之间的字节大小差,如果这个值大于0,
    //那么说明需要对p所指向的节点(的header)进行扩展

    nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;

    /* Store offset because a realloc may change the address of zl. */
    //因为重分配空间可能会改变zl的地址,
    //所以再分配之前,需要记录zl到p的偏移量,然后在分配之后依靠偏移量还原p
    offset = p-zl;
    //curlen:ziplist原来的长度
    //reqlen:整个新节点的长度
    //nextdiff:新节点的后继节点扩展header的长度(要么0字节,要么4字节)
    zl = ziplistResize(zl,curlen+reqlen+nextdiff);
    p = zl+offset;

    /* Apply memory move when necessary and update tail offset. */
    if (p[0] != ZIP_END) {
        //当列表不为空时,
        /* Subtract one because of the ZIP_END bytes */
        //新节点之后还有节点,因为新节点的加入,需要对这些原有的节点进行调整
        //移动现有元素,为新元素的插入空间腾出位置
        memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);

        /* Encode this entry's raw length in the next entry. */
        //将新节点的长度编码至后置节点
        //p + reqlen 定位到后置节点
        //reqlen是新节点的长度
        zipPrevEncodeLength(p+reqlen,reqlen);

        /* Update offset for tail */
        //更新表尾的偏移量,将新节点的长度也算上
        ZIPLIST_TAIL_OFFSET(zl) =
            intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);

        /* When the tail contains more than one entry, we need to take
         * "nextdiff" in account as well. Otherwise, a change in the
         * size of prevlen doesn't have an effect on the *tail* offset. */
        //如果新节点的后面多于一个节点
        //那么程序需要将nextdiff记录的字节数也计算到表尾偏移量中
        //这样才能让表尾偏移量正确对齐表尾节点
        tail = zipEntry(p+reqlen);
        if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
            ZIPLIST_TAIL_OFFSET(zl) =
                intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
        }
    } else {
        //新元素为表尾节点
        /* This element will be the new tail. */
        ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
    }

    /* When nextdiff != 0, the raw length of the next entry has changed, so
     * we need to cascade the update throughout the ziplist */
    //当nextdiff != 0时,新节点的后继节点的(header部分)长度已经被改变,
    //所以需要级联地更新后续的节点
    if (nextdiff != 0) {
        offset = p-zl;
        zl = __ziplistCascadeUpdate(zl,p+reqlen);
        p = zl+offset;
    }

    /* Write the entry */
    //调用函数zipPrevEncodeLength:对前置节点的长度进行编码,并将它写入p中,
    //返回编码prevlen所需的字节数量
    p += zipPrevEncodeLength(p,prevlen);
    //调用函数zipEncodeLength:编码节点长度值slen,并将它写入到p中,然后返回编码slen所需的字节数量
    p += zipEncodeLength(p,encoding,slen);
    //如果是编码字符串
    if (ZIP_IS_STR(encoding)) {
        //内存拷贝
        memcpy(p,s,slen);
    } else {
        //否则,以encoding指定的编码方式,将整数值value写入到p
        zipSaveInteger(p,value,encoding);
    }
    //更新列表的节点数量计数器
    ZIPLIST_INCR_LENGTH(zl,1);
    return zl;
}</span>
   基于插入函数封装的一个函数:

/*
 * 将长度为slen的字符串s推入到zl中。
 *
 * where 参数的值决定了推入方向:
 * -值为ZIPLIST_HEAD时,将新值推入到表头
 * -否则,将新值推入到表末端
 *
 *  函数的返回值:添加新值后的ziplist
 * */
unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
    unsigned char *p;
    //根据where的值,决定将值推入到表头还是表尾
    p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
    //调用插入函数
    return __ziplistInsert(zl,p,s,slen);
}
(3)压缩列表有关的查找(比如 返回下标对应的节点,返回前置节点,返回后置节点等 ):

/* Returns an offset to use for iterating with ziplistNext. When the given
 * index is negative, the list is traversed back to front. When the list
 * doesn't contain an element at the provided index, NULL is returned.
 *
 * 根据给定的索引,遍历列表,并返回索引指定节点的指针
 *
 * 如果索引为正,那么从表头向表尾遍历
 * 如果索引为负,那么从表尾向表头遍历
 * 正数索引从0开始,负数索引从-1开始
 *
 * 如果索引超过列表的节点数量,或者列表为空,那么返回NULL
 *
 * */
unsigned char *ziplistIndex(unsigned char *zl, int index) {
    unsigned char *p;
    unsigned int prevlensize, prevlen = 0;
    if (index < 0) {
        //当索引为负数时
        index = (-index)-1;
        //定位表尾节点
        p = ZIPLIST_ENTRY_TAIL(zl);
        if (p[0] != ZIP_END) {
            //如果列表不为空时,
            //调用函数ZIP_DECODE_PREVLEN:解码p指针
            //prevlensize:保存编码前置节点长度所所需的字节数
            //prevlen:保存前置节点的长度值
            ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
            //从表尾向表头遍历
            while (prevlen > 0 && index--) {
                p -= prevlen;
                ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
            }
        }
    } else {
        //当index > 0时
        //定位表头节点
        p = ZIPLIST_ENTRY_HEAD(zl);
        //从表头开始遍历节点
        while (p[0] != ZIP_END && index--) {
            p += zipRawEntryLength(p);
        }
    }
    //返回结果
    return (p[0] == ZIP_END || index > 0) ? NULL : p;
}

/* Return pointer to next entry in ziplist.
 *
 * zl is the pointer to the ziplist
 * p is the pointer to the current element
 *
 * The element after 'p' is returned, otherwise NULL if we are at the end.
 *
 * 返回p所指向节点的后置节点
 *
 * 如果p为表末端,或者p已经是表尾节点,那么返回NULL
 *
 * */
unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
    ((void) zl);

    /* "p" could be equal to ZIP_END, caused by ziplistDelete,
     * and we should return NULL. Otherwise, we should return NULL
     * when the *next* element is ZIP_END (there is no next entry). */
    //如果p已经指向列表末端
    if (p[0] == ZIP_END) {
        return NULL;
    }
    //指向p的后一个节点
    p += zipRawEntryLength(p);
    if (p[0] == ZIP_END) {
        //p已经是表尾节点,没有后置节点
        return NULL;
    }
    
    return p;
}

/* Return pointer to previous entry in ziplist. 
 *
 * 返回p所指向节点的前置节点
 *
 * 如果p指向为空列表,或者p已经指向表头节点,那么返回NULL
 *
 * */
unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
    unsigned int prevlensize, prevlen = 0;

    /* Iterating backwards from ZIP_END should return the tail. When "p" is
     * equal to the first element of the list, we're already at the head,
     * and should return NULL. */
    //如果p指向表列表末端
    if (p[0] == ZIP_END) {
        //定位表尾节点
        p = ZIPLIST_ENTRY_TAIL(zl);
        //如果表尾节点也指向列表末端,那么列表为空,返回NULL,
        //否则,返回p
        return (p[0] == ZIP_END) ? NULL : p;
    } else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
        //如果p指向表头节点,则其前置节点为NULL
        return NULL;
    } else {
        //当p既不是表头也不是表尾时,
        //调用ZIP_DECODE_PREVLEN函数:获得编码前置节点需要的字节数和前置节点的长度
        ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
        //保证prevlen > 0
        assert(prevlen > 0);
        //移动指针指向前一个节点
        return p-prevlen;
    }
}
(4) 获取节点值:

<span style="font-size:18px;">/* Get entry pointed to by 'p' and store in either '*sstr' or 'sval' depending
 * on the encoding of the entry. '*sstr' is always set to NULL to be able
 * to find out whether the string pointer or the integer value was set.
 * Return 0 if 'p' points to the end of the ziplist, 1 otherwise. 
 *
 * 取出p所指向节点的值:
 *
 *  -如果节点保存的是字符串,那么将字符串指针保存到*sstr中,字符串长度保存到*slen
 *
 *  -如果节点保存的是整数,那么将整数保存到*sval
 *
 *  程序可以通过检查*sstr是否为NULL来检查值是字符串还是整数
 *
 *  提取成功返回1
 *  如果p为空,或者p指向的是列表末端,那么返回0,提取值失败
 *
 * */

unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
    zlentry entry;
    //如果p == NULL 或 列表为空时,返回0,提取失败
    if (p == NULL || p[0] == ZIP_END) return 0;
    if (sstr) *sstr = NULL;
    //取出p所指向的节点的各项信息,并保存到结构entry中
    entry = zipEntry(p);
    if (ZIP_IS_STR(entry.encoding)) {
        //当节点的值为字符串,将字符串长度保存到*slen,字符串保存到*sstr
        if (sstr) {
            //字符串长度
            *slen = entry.len;
            //字符串内容
            *sstr = p+entry.headersize;
        }
    } else {
        //节点的值为整数时,
        if (sval) {
            //调用函数zipLoadInteger,以encoding指定的编码方式,读取并返回指针p中的整数值
            *sval = zipLoadInteger(p+entry.headersize,entry.encoding);
        }
    }
    return 1;
}
</span>




 (5)节点值的比较:

/* Compare entry pointer to by 'p' with 'sstr' of length 'slen'. */
/* Return 1 if equal. 
 *
 * 将p所指向的节点的值和sstr进行对比
 *
 * 如果节点值和sstr的值相等,返回1,不相等返回0
 *
 * */
unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
    zlentry entry;
    unsigned char sencoding;
    long long zval, sval;
    //如果列表为空,则返回0
    if (p[0] == ZIP_END) return 0;
    //取出节点p所对应的信息保存于entry中
    entry = zipEntry(p);
    if (ZIP_IS_STR(entry.encoding)) {
        //如果节点值为字符串,进行字符串对比
        /* Raw compare */
        if (entry.len == slen) {
            //如果节点p中保存的字符串长度 == slen
            //调用字符串对比函数
            return memcmp(p+entry.headersize,sstr,slen) == 0;
        } else {
            //两长度不相等时,返回0
            return 0;
        }
    } else {
        //如果节点值为整数时,
        /* Try to compare encoded values. Don't compare encoding because
         * different implementations may encoded integers differently. */

        //调用函数zipEncoding:检查sstr中指向的字符串能否被编码为整数
        //如果可以编码的话,将编码后的整数保存在sval中,将编码方式保存在sencoding中
        if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
          //当编码成功时,调用函数获取p节点的整数值
          zval = zipLoadInteger(p+entry.headersize,entry.encoding);
          return zval == sval;
        }
    }
    return 0;
}

/* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
 * between every comparison. Returns NULL when the field could not be found. 
 *
 * 寻找节点值和vstr相等的列表节点,并返回该节点的指针
 *
 * 每次对比之前都跳过skip个节点
 *
 * 如果找不到相应的节点,则返回NULL
 *
 * */
unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
    int skipcnt = 0;
    unsigned char vencoding = 0;
    long long vll = 0;
    //只要没有到达列表末节点,就一直迭代
    while (p[0] != ZIP_END) {
        unsigned int prevlensize, encoding, lensize, len;
        unsigned char *q;
        //获得编码前置节点长度所需的字节数
        ZIP_DECODE_PREVLENSIZE(p, prevlensize);
        //调用函数获取列表节点的相关信息
        //encoding:保存节点的编码类型
        //lensize:保存编码节点长度所需的字节数
        //len:保存节点的长度
        ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
        q = p + prevlensize + lensize;

        if (skipcnt == 0) {
            /* Compare current entry with specified entry */
            if (ZIP_IS_STR(encoding)) {
                //如果p中保存的是字符串,
                //对比字符串
                if (len == vlen && memcmp(q, vstr, vlen) == 0) {
                    return p;
                }
            } else {
                /* Find out if the searched field can be encoded. Note that
                 * we do it only the first time, once done vencoding is set
                 * to non-zero and vll is set to the integer value. */
                //因为传入值有可能被编码了
                //所以当第一次进行值对比时,程序会对传入值进行解码
                //这个解码操作只会进行1次
                if (vencoding == 0) {
                    //调用函数zipTryEncoding:尝试将vstr编码为整数
                    if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
                        /* If the entry can't be encoded we set it to
                         * UCHAR_MAX so that we don't retry again the next
                         * time. */
                        //当编码失败时,
                        vencoding = UCHAR_MAX;
                    }
                    /* Must be non-zero by now */
                    assert(vencoding);
                }

                /* Compare current entry with specified entry, do it only
                 * if vencoding != UCHAR_MAX because if there is no encoding
                 * possible for the field it can't be a valid integer. */
                if (vencoding != UCHAR_MAX) {
                    //当程序执行到这时,说明vstr可以编码为整数。
                    //q代表节点p所占的字节数,将p根据编码转化为整数
                    long long ll = zipLoadInteger(q, encoding);
                    if (ll == vll) {
                        return p;
                    }
                }
            }

            /* Reset skip count */
            skipcnt = skip;
        } else {
            /* Skip entry */
            skipcnt--;
        }

        /* Move to next entry */
        //指针后移
        p = q + len;
    }

    return NULL;
}

/* Return length of ziplist.
 *
 * 返回ziplist中的节点个数
 *
 * */
unsigned int ziplistLen(unsigned char *zl) {
    unsigned int len = 0;
    //节点数小于< UINT16_MAX,直接返回其长度
    if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) {
        len = intrev16ifbe(ZIPLIST_LENGTH(zl));
    } else {
        //当节点数大于UINT16_MAX,需要遍历整个列表才能计算出节点
        unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
        while (*p != ZIP_END) {
            p += zipRawEntryLength(p);
            len++;
        }

        /* Re-store length if small enough */
        if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = intrev16ifbe(len);
    }
    return len;
}

/* Return ziplist blob size in bytes. 
 *
 * 返回整个ziplist占用的内存字节数
 * */
size_t ziplistBlobLen(unsigned char *zl) {
    return intrev32ifbe(ZIPLIST_BYTES(zl));
}


上述则是所有redis对于压缩列表的实现!!!源代码我也做了比较清楚的说明,欢迎大家找茬!!!

看过源码的人应该知道,压缩列表在插入和删除时效率是比较低的,因为在压缩列表的节点的结构体中封装了一个叫prevlensize的成员,该成员记录的是编码前置节点所需的字节数,和prevlen记录前置节点的长度,在插入的过程中就会出现连锁更新的现象,删除也是如此,对于插入和删除的最坏的时间复杂度达到o(n^2),所以压缩列表不太适合数据量比较的时候,它适用于数据量不大的情况下。。。

你可能感兴趣的:(redis基本数据结构之压缩列表)