B. Cosmic Tables

time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The Free Meteor Association (FMA) has got a problem: as meteors are moving, the Universal Cosmic Descriptive Humorous Program (UCDHP) needs to add a special module that would analyze this movement.

UCDHP stores some secret information about meteors as an n × m table with integers in its cells. The order of meteors in the Universe is changing. That's why the main UCDHP module receives the following queries:

  • The query to swap two table rows;
  • The query to swap two table columns;
  • The query to obtain a secret number in a particular table cell.

As the main UCDHP module is critical, writing the functional of working with the table has been commissioned to you.

Input

The first line contains three space-separated integers nm and k (1 ≤ n, m ≤ 10001 ≤ k ≤ 500000) — the number of table columns and rows and the number of queries, correspondingly.

Next n lines contain m space-separated numbers each — the initial state of the table. Each number p in the table is an integer and satisfies the inequality 0 ≤ p ≤ 106.

Next k lines contain queries in the format "si xi yi", where si is one of the characters "с", "r" or "g", and xiyi are two integers.

  • If si = "c", then the current query is the query to swap columns with indexes xi and yi (1 ≤ x, y ≤ m, x ≠ y);
  • If si = "r", then the current query is the query to swap rows with indexes xi and yi (1 ≤ x, y ≤ n, x ≠ y);
  • If si = "g", then the current query is the query to obtain the number that located in the xi-th row and in the yi-th column (1 ≤ x ≤ n, 1 ≤ y ≤ m).

The table rows are considered to be indexed from top to bottom from 1 to n, and the table columns — from left to right from 1 to m.

Output

For each query to obtain a number (si = "g") print the required number. Print the answers to the queries in the order of the queries in the input.

Sample test(s)
input
3 3 5
1 2 3
4 5 6
7 8 9
g 3 2
r 3 2
c 2 3
g 2 2
g 3 2
output
8
9
6
input
2 3 3
1 2 4
3 1 5
c 2 1
r 1 2
g 1 3
output
5
Note

Let's see how the table changes in the second test case.

After the first operation is fulfilled, the table looks like that:

2 1 4

1 3 5

After the second operation is fulfilled, the table looks like that:

1 3 5

2 1 4

So the answer to the third query (the number located in the first row and in the third column) will be 5.


解题说明:此题的意思很明确,就是给你一个矩阵,进行行列变换,输出某个位置的值。最简单的想法是每一个操作过来对矩阵做一次变换,不过显然在操作数目很多的情况下极容易超时。为此,应该考虑在变换的时候并不是真的对矩阵进行处理,而是记录下矩阵的交换信息,在输出矩阵中某个值的时候才根据交换信息进行输出。用一个二维数组存矩阵,两个一维数组分别存放行列变换信息,交换时只改变一维数组中的值,输出时用再从一维数组中去查找即可。


#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;

int a[1001][1001];
int h[1001],l[1001];


int main()
{
	int n,m,k,i,j;
	char op;
	int pos1,pos2;
	int temp;
	scanf("%d %d %d",&n,&m,&k);
	for(i=0;i<1001;i++)
	{
		h[i]=i;
		l[i]=i;
	}
	for(i=0;i<n;i++)
	{
		for(j=0;j<m;j++)
		{
			scanf("%d",&a[i][j]);
		}
	}

	for(i=0;i<k;i++)
	{
		getchar();
		scanf("%c %d %d",&op,&pos1,&pos2);
		pos1--;
		pos2--;
		if(op=='g')
		{
			printf("%d\n",a[h[pos1]][l[pos2]]);
		}
		else if(op=='c')
		{
			temp=l[pos1];
            l[pos1]=l[pos2];
            l[pos2]=temp;
		}
		else if(op=='r')
		{
			temp=h[pos1];
			h[pos1]=h[pos2];
			h[pos2]=temp;
		}
	}

    return 0;
}


你可能感兴趣的:(B. Cosmic Tables)