最大二分图匹配算法

一)预备知识
    什么是二分图:二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。
最大二分图匹配算法_第1张图片
    什么是匹配:把上图想象成3男4女搞对象(无同性恋),连线代表彼此有好感,但最终只能1夫1妻,最终的配对结果连线就是一个匹配。匹配可以是空。
    什么是最大匹配:在有好感的基础上,能够最多发展几对。

    现在要用匈牙利算法找出最多能发展几对。
[color=green][size=medium]
匈牙利算法是解决寻找二分图最大匹配的。

(二)匈牙利算法正文:
    匈牙利算法中有个非常非常最重要的概念叫做-交错路径,或者叫交错树,指的同一个东西。交错路径是这样的。现在有一个匹配如图黑线所示

    则其交错路径为:
最大二分图匹配算法_第2张图片
    交错路径是对于一个匹配而言的,交错路径的起点和终点必须不是匹配中的点,而且匹配中的边在交错路径中交替出现。
    先给一个例子
    1、起始没有匹配
最大二分图匹配算法_第3张图片
    2、选中第一个x点找第一跟连线
最大二分图匹配算法_第4张图片
    3、选中第二个点找第二跟连线
最大二分图匹配算法_第5张图片
    4、发现x3的第一条边x3y1已经被人占了,找出x3出发的的交错路径x3-y1-x1-y4,把交错路中已在匹配上的边x1y1从匹配中去掉,剩余的边x3y1 x1y4加到匹配中去
最大二分图匹配算法_第6张图片
    5、同理加入x4,x5。
   
    匈牙利算法可以深度有限或者广度优先,刚才的示例是深度优先,即x3找y1,y1已经有匹配,则找交错路。若是广度优先,应为:x3找y1,y1有匹配,x3找y2。

你可能感兴趣的:(最大二分图匹配算法)