1.方式
1.1方式一:先把App操作过程录制成视频,然后根据视频转换成Gif
参考:http://www.jb51.net/article/78236.htm
1.2方式二:采用截屏的方式得到bitmaps数组,然后根据bitmaps数组生成gif
2.方式二举例
//截屏类
package com.example.androidgifmaker;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.ArrayList;
import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.Rect;
import android.util.Log;
public class ScreenShot {
public static String TAG = "ScreenShot";
public static ArrayList<Bitmap> bitmaps; //Add your bitmaps from internal or external storage.
// 获取指定Activity的截屏,保存到png文件
private static Bitmap takeScreenShot(Activity activity) {
// View是你需要截图的View
View view = activity.getWindow().getDecorView();
view.setDrawingCacheEnabled(true);
view.buildDrawingCache();
Bitmap b1 = view.getDrawingCache();
// 获取状态栏高度
Rect frame = new Rect();
activity.getWindow().getDecorView().getWindowVisibleDisplayFrame(frame);
int statusBarHeight = frame.top;
Log.i(TAG, "状态栏的高度" + statusBarHeight);
int wintop = activity.getWindow().findViewById(android.R.id.content).getTop();
int titleBarHeight = wintop-statusBarHeight;
Log.i(TAG, "标题栏的高度:"+ titleBarHeight);
// 获取屏幕长和高
int width = activity.getWindowManager().getDefaultDisplay().getWidth();
int height = activity.getWindowManager().getDefaultDisplay().getHeight();
Log.i(TAG, "屏幕的宽度:" + width);
Log.i(TAG, "屏幕的高度:" + height);
// 去掉标题栏
// Bitmap b = Bitmap.createBitmap(b1, 0, 25, 320, 455);
Bitmap b = Bitmap.createBitmap(b1, 0, statusBarHeight, width, height - statusBarHeight);
view.destroyDrawingCache();
return b;
}
// 程序入口
public static void shoot(Activity a) {
if(bitmaps!=null){
bitmaps.add(ScreenShot.takeScreenShot(a));
}
}
}
//Gif生成类AnimatedGifMaker.class
//开源项目:https://github.com/dilligan/AndroidGifMaker
package com.example.androidgifmaker;
import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import android.graphics.Bitmap;
import android.graphics.Color;
public class AnimatedGifMaker{
// still logs noWRITE and noEXISTER
// use Paint for instance field transparent in the future
protected int width; // image size
protected int height;
protected Color transparent = null; // transparent color if given
protected int transIndex; // transparent index in color table
protected int repeat = -1; // no repeat
protected int delay = 0; // frame delay (hundredths)
protected boolean started = false; // ready to output frames
protected OutputStream out;
protected Bitmap image; // current frame
protected byte[] pixels; // BGR byte array from frame
protected byte[] indexedPixels; // converted frame indexed to palette
protected int colorDepth; // number of bit planes
protected byte[] colorTab; // RGB palette
protected boolean[] usedEntry = new boolean[256]; // active palette entries
protected int palSize = 7; // color table size (bits-1)
protected int dispose = -1; // disposal code (-1 = use default)
protected boolean closeStream = false; // close stream when finished
protected boolean firstFrame = true;
protected boolean sizeSet = false; // if false, get size from first frame
protected int sample = 10; // default sample interval for quantizer
/** * Sets the delay time between each frame, or changes it for subsequent * frames (applies to last frame added). * * @param ms * int delay time in milliseconds */
public void setDelay(int ms) {
delay = Math.round(ms / 10.0f);
}
/** * Sets the GIF frame disposal code for the last added frame and any * subsequent frames. Default is 0 if no transparent color has been set, * otherwise 2. * * @param code * int disposal code. */
public void setDispose(int code) {
if (code >= 0) {
dispose = code;
}
}
/** * Sets the number of times the set of GIF frames should be played. Default * is 1; 0 means play indefinitely. Must be invoked before the first image * is added. * * @param iter * int number of iterations. * @return */
public void setRepeat(int iter) {
if (iter >= 0) {
repeat = iter;
}
}
/** * MAKES ABSOLUTE WHITE (0,0,0) THE TRANSPARENT COLOR. * * @param c * Color to be treated as transparent on display. */
public void setTransparent(Color c) {
transparent = c;
}
/** * Adds next GIF frame. The frame is not written immediately, but is * actually deferred until the next frame is received so that timing data * can be inserted. Invoking <code>finish()</code> flushes all frames. If * <code>setSize</code> was not invoked, the size of the first image is used * for all subsequent frames. * * @param im * BufferedImage containing frame to write. * @return true if successful. */
public boolean addFrame(Bitmap im) {
if ((im == null) || !started) {
return false;
}
boolean ok = true;
try {
if (!sizeSet) {
// use first frame's size
setSize(im.getWidth(), im.getHeight());
}
image = im;
getImagePixels(); // convert to correct format if necessary
analyzePixels(); // build color table & map pixels
if (firstFrame) {
writeLSD(); // logical screen descriptior
writePalette(); // global color table
if (repeat >= 0) {
// use NS app extension to indicate reps
writeNetscapeExt();
}
}
writeGraphicCtrlExt(); // write graphic control extension THIS IS IT
writeImageDesc(); // image descriptor
if (!firstFrame) {
writePalette(); // local color table
}
writePixels(); // encode and write pixel data
firstFrame = false;
} catch (IOException e) {
ok = false;
}
return ok;
}
/** * Flushes any pending data and closes output file. If writing to an * OutputStream, the stream is not closed. */
public boolean finish() {
if (!started)
return false;
boolean ok = true;
started = false;
try {
out.write(0x3b); // gif trailer
out.flush();
if (closeStream) {
out.close();
}
} catch (IOException e) {
ok = false;
}
// reset for subsequent use
transIndex = 0;
out = null;
image = null;
pixels = null;
indexedPixels = null;
colorTab = null;
closeStream = false;
firstFrame = true;
return ok;
}
/** * Sets frame rate in frames per second. Equivalent to * <code>setDelay(1000/fps)</code>. * * @param fps * float frame rate (frames per second) */
public void setFrameRate(float fps) {
if (fps != 0f) {
delay = Math.round(100f / fps);
}
}
/** * Sets quality of color quantization (conversion of images to the maximum * 256 colors allowed by the GIF specification). Lower values (minimum = 1) * produce better colors, but slow processing significantly. 10 is the * default, and produces good color mapping at reasonable speeds. Values * greater than 20 do not yield significant improvements in speed. * * @param quality * int greater than 0. * @return */
public void setQuality(int quality) {
if (quality < 1)
quality = 1;
sample = quality;
}
/** * Sets the GIF frame size. The default size is the size of the first frame * added if this method is not invoked. * * @param w * int frame width. * @param h * int frame width. */
public void setSize(int w, int h) {
if (started && !firstFrame)
return;
width = w;
height = h;
if (width < 1)
width = 320;
if (height < 1)
height = 240;
sizeSet = true;
}
/** * Initiates GIF file creation on the given stream. The stream is not closed * automatically. * * @param os * OutputStream on which GIF images are written. * @return false if initial write failed. */
public boolean start(OutputStream os) {
if (os == null)
return false;
boolean ok = true;
closeStream = false;
out = os;
try {
writeString("GIF87a"); // header
} catch (IOException e) {
ok = false;
}
return started = ok;
}
/** * Initiates writing of a GIF file with the specified name. * * @param file * String containing output file name. * @return false if open or initial write failed. */
public boolean start(String file) {
boolean ok = true;
try {
out = new BufferedOutputStream(new FileOutputStream(file));
ok = start(out);
closeStream = true;
} catch (IOException e) {
ok = false;
}
return started = ok;
}
/** * Analyzes image colors and creates color map. */
protected void analyzePixels() {
int len = pixels.length;
int nPix = len / 3;
indexedPixels = new byte[nPix];
NeuQuant nq = new NeuQuant(pixels, len, sample);
// initialize quantizer
colorTab = nq.process(); // create reduced palette
// convert map from BGR to RGB
for (int i = 0; i < colorTab.length; i += 3) {
byte temp = colorTab[i];
colorTab[i] = colorTab[i + 2];
colorTab[i + 2] = temp;
usedEntry[i / 3] = false;
}
// map image pixels to new palette
// HACK
int k = 0;
for (int i = 0; i < nPix; i++) {
int index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff,
pixels[k++] & 0xff);
usedEntry[index] = true;
indexedPixels[i] = (byte) index;
}
pixels = null;
colorDepth = 8;
palSize = 7;
// get closest match to transparent color if specified
if (transparent != null) {
transIndex = findClosest(transparent);
}
}
/** * Returns index of palette color closest to c * */
protected int findClosest(Color c) {
if (colorTab == null)
return -1;
// HACK
int r = 0;
int g = 0;
int b = 0;
int minpos = 0;
int dmin = 256 * 256 * 256;
int len = colorTab.length;
for (int i = 0; i < len;) {
int dr = r - (colorTab[i++] & 0xff);
int dg = g - (colorTab[i++] & 0xff);
int db = b - (colorTab[i] & 0xff);
int d = dr * dr + dg * dg + db * db;
int index = i / 3;
if (usedEntry[index] && (d < dmin)) {
dmin = d;
minpos = index;
}
i++;
}
return minpos;
}
/** * Extracts image pixels into byte array "pixels" */
protected void getImagePixels() {
// calculate how many bytes our image consists of.
int bytes = image.getByteCount();
ByteBuffer buffer = ByteBuffer.allocate(bytes); // Create a new buffer
image.copyPixelsToBuffer(buffer); // Move the byte data to the buffer
byte[] inputBytes = buffer.array(); // Get the underlying array
// containing the data.
pixels = new byte[(3 * inputBytes.length) / 4];
for (int i = 0; i < inputBytes.length / 4; i++) {
byte r = inputBytes[4 * i];
byte g = inputBytes[4 * i + 1];
byte b = inputBytes[4 * i + 2];
// ignore alpha
pixels[3 * i] = r;
pixels[3 * i + 1] = g;
pixels[3 * i + 2] = b;
}
for (int i = 0; i < pixels.length; i += 3) {
//switch R and B
byte temp = pixels[i];
pixels[i] = pixels[i + 2];
pixels[i + 2] = temp;
}
}
/** * Writes Graphic Control Extension */
protected void writeGraphicCtrlExt() throws IOException {
out.write(0x21); // extension introducer
out.write(0xf9); // GCE label
out.write(4); // data block size
int transp, disp;
if (transparent == null) {
transp = 0;
disp = 0; // dispose = no action
} else {
transp = 1;
disp = 2; // force clear if using transparent color
}
if (dispose >= 0) {
disp = dispose & 7; // user override
}
disp <<= 2;
// packed fields
out.write(0 | // 1:3 reserved
disp | // 4:6 disposal
0 | // 7 user input - 0 = none
transp); // 8 transparency flag
writeShort(delay); // delay x 1/100 sec
out.write(transIndex); // transparent color index
out.write(0); // block terminator
}
/** * Writes Image Descriptor */
protected void writeImageDesc() throws IOException {
out.write(0x2c); // image separator
writeShort(0); // image position x,y = 0,0
writeShort(0);
writeShort(width); // image size
writeShort(height);
// packed fields
if (firstFrame) {
// no LCT - GCT is used for first (or only) frame
out.write(0);
} else {
// specify normal LCT
out.write(0x80 | // 1 local color table 1=yes
0 | // 2 interlace - 0=no
0 | // 3 sorted - 0=no
0 | // 4-5 reserved
palSize); // 6-8 size of color table
}
}
/** * Writes Logical Screen Descriptor */
protected void writeLSD() throws IOException {
// logical screen size
writeShort(width);
writeShort(height);
// packed fields
out.write((0x80 | // 1 : global color table flag = 1 (gct used)
0x70 | // 2-4 : color resolution = 7
0x00 | // 5 : gct sort flag = 0
palSize)); // 6-8 : gct size
out.write(0); // background color index
out.write(0); // pixel aspect ratio - assume 1:1
}
/** * Writes Netscape application extension to define repeat count. */
protected void writeNetscapeExt() throws IOException {
out.write(0x21); // extension introducer
out.write(0xff); // app extension label
out.write(11); // block size
writeString("NETSCAPE" + "2.0"); // app id + auth code
out.write(3); // sub-block size
out.write(1); // loop sub-block id
writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
out.write(0); // block terminator
}
/** * Writes color table */
protected void writePalette() throws IOException {
out.write(colorTab, 0, colorTab.length);
int n = (3 * 256) - colorTab.length;
for (int i = 0; i < n; i++) {
out.write(0);
}
}
/** * Encodes and writes pixel data */
protected void writePixels() throws IOException {
LZWEncoder encoder = new LZWEncoder(width, height, indexedPixels,
colorDepth);
encoder.encode(out);
}
/** * Write 16-bit value to output stream, LSB first */
protected void writeShort(int value) throws IOException {
out.write(value & 0xff);
out.write((value >> 8) & 0xff);
}
/** * Writes string to output stream */
protected void writeString(String s) throws IOException {
for (int i = 0; i < s.length(); i++) {
out.write((byte) s.charAt(i));
}
}
}
class NeuQuant {
protected static final int netsize = 256; /* number of colours used */
/* four primes near 500 - assume no image has a length so large */
/* that it is divisible by all four primes */
protected static final int prime1 = 499;
protected static final int prime2 = 491;
protected static final int prime3 = 487;
protected static final int prime4 = 503;
protected static final int minpicturebytes = (3 * prime4);
/* minimum size for input image */
/* * Program Skeleton ---------------- [select samplefac in range 1..30] [read * image from input file] pic = (unsigned char*) malloc(3*width*height); * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write * output image header, using writecolourmap(f)] inxbuild(); write output * image using inxsearch(b,g,r) */
/* * Network Definitions ------------------- */
protected static final int maxnetpos = (netsize - 1);
protected static final int netbiasshift = 4; /* bias for colour values */
protected static final int ncycles = 100; /* no. of learning cycles */
/* defs for freq and bias */
protected static final int intbiasshift = 16; /* bias for fractions */
protected static final int intbias = (((int) 1) << intbiasshift);
protected static final int gammashift = 10; /* gamma = 1024 */
protected static final int gamma = (((int) 1) << gammashift);
protected static final int betashift = 10;
protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
protected static final int betagamma = (intbias << (gammashift - betashift));
/* defs for decreasing radius factor */
protected static final int initrad = (netsize >> 3); /* * for 256 cols, radius * starts */
protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
protected static final int radiusbias = (((int) 1) << radiusbiasshift);
protected static final int initradius = (initrad * radiusbias); /* * and * decreases * by a */
protected static final int radiusdec = 30; /* factor of 1/30 each cycle */
/* defs for decreasing alpha factor */
protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
protected static final int initalpha = (((int) 1) << alphabiasshift);
protected int alphadec; /* biased by 10 bits */
/* radbias and alpharadbias used for radpower calculation */
protected static final int radbiasshift = 8;
protected static final int radbias = (((int) 1) << radbiasshift);
protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
protected static final int alpharadbias = (((int) 1) << alpharadbshift);
/* * Types and Global Variables -------------------------- */
protected byte[] thepicture; /* the input image itself */
protected int lengthcount; /* lengthcount = H*W*3 */
protected int samplefac; /* sampling factor 1..30 */
// typedef int pixel[4]; /* BGRc */
protected int[][] network; /* the network itself - [netsize][4] */
protected int[] netindex = new int[256];
/* for network lookup - really 256 */
protected int[] bias = new int[netsize];
/* bias and freq arrays for learning */
protected int[] freq = new int[netsize];
protected int[] radpower = new int[initrad];
/* radpower for precomputation */
/* * Initialise network in range (0,0,0) to (255,255,255) and set parameters * ----------------------------------------------------------------------- */
public NeuQuant(byte[] thepic, int len, int sample) {
int i;
int[] p;
thepicture = thepic;
lengthcount = len;
samplefac = sample;
network = new int[netsize][];
for (i = 0; i < netsize; i++) {
network[i] = new int[4];
p = network[i];
p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
freq[i] = intbias / netsize; /* 1/netsize */
bias[i] = 0;
}
}
public byte[] colorMap() {
byte[] map = new byte[3 * netsize];
int[] index = new int[netsize];
for (int i = 0; i < netsize; i++)
index[network[i][3]] = i;
int k = 0;
for (int i = 0; i < netsize; i++) {
int j = index[i];
map[k++] = (byte) (network[j][0]);
map[k++] = (byte) (network[j][1]);
map[k++] = (byte) (network[j][2]);
}
return map;
}
/* * Insertion sort of network and building of netindex[0..255] (to do after * unbias) * ------------------------------------------------------------------ * ------------- */
public void inxbuild() {
int i, j, smallpos, smallval;
int[] p;
int[] q;
int previouscol, startpos;
previouscol = 0;
startpos = 0;
for (i = 0; i < netsize; i++) {
p = network[i];
smallpos = i;
smallval = p[1]; /* index on g */
/* find smallest in i..netsize-1 */
for (j = i + 1; j < netsize; j++) {
q = network[j];
if (q[1] < smallval) { /* index on g */
smallpos = j;
smallval = q[1]; /* index on g */
}
}
q = network[smallpos];
/* swap p (i) and q (smallpos) entries */
if (i != smallpos) {
j = q[0];
q[0] = p[0];
p[0] = j;
j = q[1];
q[1] = p[1];
p[1] = j;
j = q[2];
q[2] = p[2];
p[2] = j;
j = q[3];
q[3] = p[3];
p[3] = j;
}
/* smallval entry is now in position i */
if (smallval != previouscol) {
netindex[previouscol] = (startpos + i) >> 1;
for (j = previouscol + 1; j < smallval; j++)
netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos + maxnetpos) >> 1;
for (j = previouscol + 1; j < 256; j++)
netindex[j] = maxnetpos; /* really 256 */
}
/* * Main Learning Loop ------------------ */
public void learn() {
int i, j, b, g, r;
int radius, rad, alpha, step, delta, samplepixels;
byte[] p;
int pix, lim;
if (lengthcount < minpicturebytes)
samplefac = 1;
alphadec = 30 + ((samplefac - 1) / 3);
p = thepicture;
pix = 0;
lim = lengthcount;
samplepixels = lengthcount / (3 * samplefac);
delta = samplepixels / ncycles;
alpha = initalpha;
radius = initradius;
rad = radius >> radiusbiasshift;
if (rad <= 1)
rad = 0;
for (i = 0; i < rad; i++)
radpower[i] = alpha
* (((rad * rad - i * i) * radbias) / (rad * rad));
// fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);
if (lengthcount < minpicturebytes)
step = 3;
else if ((lengthcount % prime1) != 0)
step = 3 * prime1;
else {
if ((lengthcount % prime2) != 0)
step = 3 * prime2;
else {
if ((lengthcount % prime3) != 0)
step = 3 * prime3;
else
step = 3 * prime4;
}
}
i = 0;
while (i < samplepixels) {
b = (p[pix + 0] & 0xff) << netbiasshift;
g = (p[pix + 1] & 0xff) << netbiasshift;
r = (p[pix + 2] & 0xff) << netbiasshift;
j = contest(b, g, r);
altersingle(alpha, j, b, g, r);
if (rad != 0)
alterneigh(rad, j, b, g, r); /* alter neighbours */
pix += step;
if (pix >= lim)
pix -= lengthcount;
i++;
if (delta == 0)
delta = 1;
if (i % delta == 0) {
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if (rad <= 1)
rad = 0;
for (j = 0; j < rad; j++)
radpower[j] = alpha
* (((rad * rad - j * j) * radbias) / (rad * rad));
}
}
// fprintf(stderr,"finished 1D learning: final alpha=%f
// !\n",((float)alpha)/initalpha);
}
/* * Search for BGR values 0..255 (after net is unbiased) and return colour * index * -------------------------------------------------------------------- * -------- */
public int map(int b, int g, int r) {
int i, j, dist, a, bestd;
int[] p;
int best;
bestd = 1000; /* biggest possible dist is 256*3 */
best = -1;
i = netindex[g]; /* index on g */
j = i - 1; /* start at netindex[g] and work outwards */
while ((i < netsize) || (j >= 0)) {
if (i < netsize) {
p = network[i];
dist = p[1] - g; /* inx key */
if (dist >= bestd)
i = netsize; /* stop iter */
else {
i++;
if (dist < 0)
dist = -dist;
a = p[0] - b;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
if (j >= 0) {
p = network[j];
dist = g - p[1]; /* inx key - reverse dif */
if (dist >= bestd)
j = -1; /* stop iter */
else {
j--;
if (dist < 0)
dist = -dist;
a = p[0] - b;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
}
return (best);
}
public byte[] process() {
learn();
unbiasnet();
inxbuild();
return colorMap();
}
/* * Unbias network to give byte values 0..255 and record position i to * prepare for sort * ---------------------------------------------------------- * ------------------------- */
public void unbiasnet() {
int i;
for (i = 0; i < netsize; i++) {
network[i][0] >>= netbiasshift;
network[i][1] >>= netbiasshift;
network[i][2] >>= netbiasshift;
network[i][3] = i; /* record colour no */
}
}
/* * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in * radpower[|i-j|] * ---------------------------------------------------------- * ----------------------- */
protected void alterneigh(int rad, int i, int b, int g, int r) {
int j, k, lo, hi, a, m;
int[] p;
lo = i - rad;
if (lo < -1)
lo = -1;
hi = i + rad;
if (hi > netsize)
hi = netsize;
j = i + 1;
k = i - 1;
m = 1;
while ((j < hi) || (k > lo)) {
a = radpower[m++];
if (j < hi) {
p = network[j++];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (Exception e) {
} // prevents 1.3 miscompilation
}
if (k > lo) {
p = network[k--];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (Exception e) {
}
}
}
}
/* * Move neuron i towards biased (b,g,r) by factor alpha * ---------------------------------------------------- */
protected void altersingle(int alpha, int i, int b, int g, int r) {
/* alter hit neuron */
int[] n = network[i];
n[0] -= (alpha * (n[0] - b)) / initalpha;
n[1] -= (alpha * (n[1] - g)) / initalpha;
n[2] -= (alpha * (n[2] - r)) / initalpha;
}
/* * Search for biased BGR values ---------------------------- */
protected int contest(int b, int g, int r) {
/* finds closest neuron (min dist) and updates freq */
/* finds best neuron (min dist-bias) and returns position */
/* * for frequently chosen neurons, freq[i] is high and bias[i] is * negative */
/* bias[i] = gamma*((1/netsize)-freq[i]) */
int i, dist, a, biasdist, betafreq;
int bestpos, bestbiaspos, bestd, bestbiasd;
int[] n;
bestd = ~(((int) 1) << 31);
bestbiasd = bestd;
bestpos = -1;
bestbiaspos = bestpos;
for (i = 0; i < netsize; i++) {
n = network[i];
dist = n[0] - b;
if (dist < 0)
dist = -dist;
a = n[1] - g;
if (a < 0)
a = -a;
dist += a;
a = n[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
bestpos = i;
}
biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
if (biasdist < bestbiasd) {
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = (freq[i] >> betashift);
freq[i] -= betafreq;
bias[i] += (betafreq << gammashift);
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return (bestbiaspos);
}
}
class LZWEncoder {
private static final int EOF = -1;
private int imgW, imgH;
private byte[] pixAry;
private int initCodeSize;
private int remaining;
private int curPixel;
// GIFCOMPR.C - GIF Image compression routines
//
// Lempel-Ziv compression based on 'compress'. GIF modifications by
// David Rowley ([email protected])
// General DEFINEs
static final int BITS = 12;
static final int HSIZE = 5003; // 80% occupancy
// GIF Image compression - modified 'compress'
//
// Based on: compress.c - File compression ala IEEE Computer, June 1984.
//
// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
// Jim McKie (decvax!mcvax!jim)
// Steve Davies (decvax!vax135!petsd!peora!srd)
// Ken Turkowski (decvax!decwrl!turtlevax!ken)
// James A. Woods (decvax!ihnp4!ames!jaw)
// Joe Orost (decvax!vax135!petsd!joe)
int n_bits; // number of bits/code
int maxbits = BITS; // user settable max # bits/code
int maxcode; // maximum code, given n_bits
int maxmaxcode = 1 << BITS; // should NEVER generate this code
int[] htab = new int[HSIZE];
int[] codetab = new int[HSIZE];
int hsize = HSIZE; // for dynamic table sizing
int free_ent = 0; // first unused entry
// block compression parameters -- after all codes are used up,
// and compression rate changes, start over.
boolean clear_flg = false;
// Algorithm: use open addressing double hashing (no chaining) on the
// prefix code / next character combination. We do a variant of Knuth's
// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
// secondary probe. Here, the modular division first probe is gives way
// to a faster exclusive-or manipulation. Also do block compression with
// an adaptive reset, whereby the code table is cleared when the compression
// ratio decreases, but after the table fills. The variable-length output
// codes are re-sized at this point, and a special CLEAR code is generated
// for the decompressor. Late addition: construct the table according to
// file size for noticeable speed improvement on small files. Please direct
// questions about this implementation to ames!jaw.
int g_init_bits;
int ClearCode;
int EOFCode;
// output
//
// Output the given code.
// Inputs:
// code: A n_bits-bit integer. If == -1, then EOF. This assumes
// that n_bits =< wordsize - 1.
// Outputs:
// Outputs code to the file.
// Assumptions:
// Chars are 8 bits long.
// Algorithm:
// Maintain a BITS character long buffer (so that 8 codes will
// fit in it exactly). Use the VAX insv instruction to insert each
// code in turn. When the buffer fills up empty it and start over.
int cur_accum = 0;
int cur_bits = 0;
int masks[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F,
0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF,
0x7FFF, 0xFFFF };
// Number of characters so far in this 'packet'
int a_count;
// Define the storage for the packet accumulator
byte[] accum = new byte[256];
// ----------------------------------------------------------------------------
LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
imgW = width;
imgH = height;
pixAry = pixels;
initCodeSize = Math.max(2, color_depth);
}
// Add a character to the end of the current packet, and if it is 254
// characters, flush the packet to disk.
void char_out(byte c, OutputStream outs) throws IOException {
accum[a_count++] = c;
if (a_count >= 254)
flush_char(outs);
}
// Clear out the hash table
// table clear for block compress
void cl_block(OutputStream outs) throws IOException {
cl_hash(hsize);
free_ent = ClearCode + 2;
clear_flg = true;
output(ClearCode, outs);
}
// reset code table
void cl_hash(int hsize) {
for (int i = 0; i < hsize; ++i)
htab[i] = -1;
}
void compress(int init_bits, OutputStream outs) throws IOException {
int fcode;
int i /* = 0 */;
int c;
int ent;
int disp;
int hsize_reg;
int hshift;
// Set up the globals: g_init_bits - initial number of bits
g_init_bits = init_bits;
// Set up the necessary values
clear_flg = false;
n_bits = g_init_bits;
maxcode = MAXCODE(n_bits);
ClearCode = 1 << (init_bits - 1);
EOFCode = ClearCode + 1;
free_ent = ClearCode + 2;
a_count = 0; // clear packet
ent = nextPixel();
hshift = 0;
for (fcode = hsize; fcode < 65536; fcode *= 2)
++hshift;
hshift = 8 - hshift; // set hash code range bound
hsize_reg = hsize;
cl_hash(hsize_reg); // clear hash table
output(ClearCode, outs);
outer_loop: while ((c = nextPixel()) != EOF) {
fcode = (c << maxbits) + ent;
i = (c << hshift) ^ ent; // xor hashing
if (htab[i] == fcode) {
ent = codetab[i];
continue;
} else if (htab[i] >= 0) // non-empty slot
{
disp = hsize_reg - i; // secondary hash (after G. Knott)
if (i == 0)
disp = 1;
do {
if ((i -= disp) < 0)
i += hsize_reg;
if (htab[i] == fcode) {
ent = codetab[i];
continue outer_loop;
}
} while (htab[i] >= 0);
}
output(ent, outs);
ent = c;
if (free_ent < maxmaxcode) {
codetab[i] = free_ent++; // code -> hashtable
htab[i] = fcode;
} else
cl_block(outs);
}
// Put out the final code.
output(ent, outs);
output(EOFCode, outs);
}
// ----------------------------------------------------------------------------
void encode(OutputStream os) throws IOException {
os.write(initCodeSize); // write "initial code size" byte
remaining = imgW * imgH; // reset navigation variables
curPixel = 0;
compress(initCodeSize + 1, os); // compress and write the pixel data
os.write(0); // write block terminator
}
// Flush the packet to disk, and reset the accumulator
void flush_char(OutputStream outs) throws IOException {
if (a_count > 0) {
outs.write(a_count);
outs.write(accum, 0, a_count);
a_count = 0;
}
}
final int MAXCODE(int n_bits) {
return (1 << n_bits) - 1;
}
// ----------------------------------------------------------------------------
// Return the next pixel from the image
// ----------------------------------------------------------------------------
private int nextPixel() {
if (remaining == 0)
return EOF;
--remaining;
byte pix = pixAry[curPixel++];
return pix & 0xff;
}
void output(int code, OutputStream outs) throws IOException {
cur_accum &= masks[cur_bits];
if (cur_bits > 0)
cur_accum |= (code << cur_bits);
else
cur_accum = code;
cur_bits += n_bits;
while (cur_bits >= 8) {
char_out((byte) (cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
}
// If the next entry is going to be too big for the code size,
// then increase it, if possible.
if (free_ent > maxcode || clear_flg) {
if (clear_flg) {
maxcode = MAXCODE(n_bits = g_init_bits);
clear_flg = false;
} else {
++n_bits;
if (n_bits == maxbits)
maxcode = maxmaxcode;
else
maxcode = MAXCODE(n_bits);
}
}
if (code == EOFCode) {
// At EOF, write the rest of the buffer.
while (cur_bits > 0) {
char_out((byte) (cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
}
flush_char(outs);
}
}
}
package com.example.androidgifmaker;
import java.io.File;
import java.io.FileOutputStream;
import android.annotation.SuppressLint;
import android.app.Activity;
import android.app.ProgressDialog;
import android.content.Intent;
import android.graphics.Color;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.os.Handler;
import android.os.Message;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.TextView;
import android.widget.Toast;
public class MainActivity extends Activity {
ProgressDialog progressBar;
private TextView tv;
private int count;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
tv = (TextView)findViewById(R.id.text);
new Thread(new TvRunnable()).start();
}
class TvRunnable implements Runnable{
@Override
public void run() {
// TODO Auto-generated method stub
while(true){
count++;
myHandler.sendEmptyMessage(1);
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
@Override
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu);
return true;
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
// TODO Auto-generated method stub
switch (item.getItemId()) {
case R.id.action_settings:
new Thread(new ShootRunnable(2)).start();
break;
default:
break;
}
return super.onOptionsItemSelected(item);
}
class ShootRunnable implements Runnable{
private int second;
private int frameNum = 0;
ShootRunnable(int second){
this.second = second;
ScreenShot.prepareShoot();
}
@Override
public void run() {
// TODO Auto-generated method stub
while(second>0){
while (frameNum<10) {
long start = System.currentTimeMillis();
ScreenShot.shoot(MainActivity.this);
long offset;
if((offset = (System.currentTimeMillis()-start))<100){
try {
Thread.sleep(offset);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
frameNum++;
}
second--;
frameNum = 0;
}
myHandler.sendEmptyMessage(0);
}
}
Handler myHandler = new Handler(){
public void handleMessage(Message msg){
switch (msg.what) {
case 0:
makeGif();
break;
case 1:
tv.setText(count+"");
break;
default:
break;
}
};
};
public void makeGif() {
String name = "MyGif";
progressBar = ProgressDialog.show(this, "Converting...", "0%", true, false);
GifThread gt = new GifThread(name);
gt.start();
Toast.makeText(
this,
"You can access the gif in your SD Card storage, under the file Flippy. This directory is: "
+ Environment.getExternalStorageDirectory().toString()
+ "/Gifs",
Toast.LENGTH_LONG).show();
}
private class GifThread extends Thread{
private String name;
private int i;
public GifThread(String proj) { // ONLY WORKS AFTER SAVING
name=proj;
}
@Override
public void run(){
String root = Environment.getExternalStorageDirectory().toString();
File myDir = new File(root + "/Gifs/");
if(!myDir.exists())
myDir.mkdirs();
String fname = name;
File file = new File(myDir, fname + ".gif");
if (file.exists()){
file.delete();
}
try {
FileOutputStream out = new FileOutputStream(file);
AnimatedGifMaker gifs = new AnimatedGifMaker();
gifs.start(out);
gifs.setFrameRate(10);
gifs.setRepeat(0);
gifs.setTransparent(new Color());
for (i = 0; i < ScreenShot.bitmaps.size(); i++) {
gifs.addFrame(ScreenShot.bitmaps.get(i));
handler.sendEmptyMessage(1);
}
gifs.finish();
sendBroadcast(new Intent(Intent.ACTION_MEDIA_MOUNTED,
Uri.parse("file://"
+ Environment.getExternalStorageDirectory()))); // uM
// HACK
} catch (Exception e) {
e.printStackTrace();
}
handler.sendEmptyMessage(0);
}
@SuppressLint("HandlerLeak")
private Handler handler = new Handler() {
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case 0:
progressBar.dismiss();
break;
case 1:
progressBar.setMessage(i*100/(ScreenShot.bitmaps.size()-1)+"%");
break;
default:
break;
}
}
};
}
}
//AndroidManifest.xml权限声明
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS"/>
3.结果
3.1运行时
3.2生成的gif图
3.3备注
项目生成2秒,每秒10帧的gif图,存储目录在SD卡的Gifs文件夹
4.总结:
4.1完成对当前的activity的内容制作成gif图,甚至可以指定view进行制作,但是制作时不可切换activity
4.2制作时间是根据截图的文件大小决定,由于此处采用原图进行制作,所以耗时较长,可以采用压缩原图方式进行制作,减少制作时间
5.工程源码:https://github.com/HQlin/AndroidGifMaker