POJ 1419 Graph Coloring 最大独立点集->最大团 搜索

%%% http://www.cnblogs.com/zhj5chengfeng/archive/2013/07/29/3224092.html

给定一个图,输出任意一种最大独立点集的方案。

于是构建补图跑最大团即可。

#include <cstdio>
#include <cstring>
using namespace std;

const int N = 105;
int ans, f[N], set[N][N], a[N][N], tmp[N], group[N];

bool dfs(int sz, int dep) {
	if (!sz) 
		if (dep > ans) return memcpy(group, tmp, sizeof tmp), ans = dep, 1;
		else return 0;

	for (int i = 1; i <= sz; i++) {
		if (dep + sz - i + 1 <= ans) return 0;
		int u = set[dep][i];
		if (dep + f[u] <= ans) return 0;
		int num = 0;
		for (int j = i + 1; j <= sz; j++)
			if (a[u][set[dep][j]])
				set[dep + 1][++num] = set[dep][j];
		tmp[dep + 1] = u;
		if (dfs(num, dep + 1)) return 1;
	}
	return 0;
}

int main() {
	int n, k, i, j, sz, t, x, y;
	scanf("%d", &t);
	while (t--) {
		scanf("%d%d", &n, &k);
		memset(a, 1, sizeof a);
		while (k--)
			scanf("%d%d", &x, &y), a[x][y] = a[y][x] = 0;
		ans = 0;
		for (i = n; i; i--) {
			sz = 0; tmp[1] = i;
			for (j = i + 1; j <= n; j++)
				if (a[i][j])
					set[1][++sz] = j;
			dfs(sz, 1);
			f[i] = ans;
		}
		printf("%d\n", ans);
		for (i = 1; i < ans; i++) printf("%d ", group[i]);
		printf("%d\n", group[ans]);
	}

	return 0;
}

Graph Coloring
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4612   Accepted: 2114   Special Judge

Description

You are to write a program that tries to find an optimal coloring for a given graph. Colors are applied to the nodes of the graph and the only available colors are black and white. The coloring of the graph is called optimal if a maximum of nodes is black. The coloring is restricted by the rule that no two connected nodes may be black. 


POJ 1419 Graph Coloring 最大独立点集->最大团 搜索_第1张图片 
Figure 1: An optimal graph with three black nodes 

Input

The graph is given as a set of nodes denoted by numbers 1...n, n <= 100, and a set of undirected edges denoted by pairs of node numbers (n1, n2), n1 != n2. The input file contains m graphs. The number m is given on the first line. The first line of each graph contains n and k, the number of nodes and the number of edges, respectively. The following k lines contain the edges given by a pair of node numbers, which are separated by a space.

Output

The output should consists of 2m lines, two lines for each graph found in the input file. The first line of should contain the maximum number of nodes that can be colored black in the graph. The second line should contain one possible optimal coloring. It is given by the list of black nodes, separated by a blank.

Sample Input

1
6 8
1 2
1 3
2 4
2 5
3 4
3 6
4 6
5 6

Sample Output

3
1 4 5



你可能感兴趣的:(搜索,poj,OI)