Java Collection笔记之ArrayList

1、前言

ArrayList 是一个数组队列,相当于动态数组。与Java中的数组相比,它的容量能动态增长。它继承于AbstractList,实现了List, RandomAccess, Cloneable, java.io.Serializable这些接口。

  • ArrayList 继承了AbstractList,实现了List。它是一个数组队列,提供了相关的添加、删除、修改、遍历等功能。

  • ArrayList实现了RandmoAccess接口,即提供了随机访问功能。RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在ArrayList中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问。

  • ArrayList 实现了Cloneable接口,即覆盖了函数clone(),能被克隆。

  • ArrayList 实现java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。

简单地来说,ArrayList是对数组进行快速操作的一系列API。

ArrayList中的操作不是线程安全的。所以,建议在单线程中才使用ArrayList,而在多线程中可以选择Vector或者CopyOnWriteArrayList。

2、简单使用

ArrayList<Integer> list = new ArrayList<Integer>(); 
for(int i=0;i< 10; i++ ){
    //给数组增加10个Int元素
    list.add(i);
}
System.out.println("数组是否包含3:"+list.contains(3));
System.out.println("数组元素的数量:"+list.size());
System.out.println("数组的第三个元素:"+list.get(3));
//移除第三个元素
list.remove(3);
System.out.println("数组是否包含23:"+list.contains(3));
System.out.println("数组元素的数量:"+list.size());
System.out.println("数组的第三个元素:"+list.get(3));

list.clear();

System.out.println("数组元素的数量:"+list.size());

结果:

数组是否包含3true
数组元素的数量:10
数组的第三个元素:3
数组是否包含23false
数组元素的数量:9
数组的第三个元素:4
数组元素的数量:0

3、源码简单分析

3.1 构造方法

ArrayList的构造方法有3个。

前面说到ArrayList是对数组进行快速操作的一系列API。而ArrayList的构造方法就是对这个默认数组elementData的初始化。

  • 默认的构造方法,并为内置的elementData初始化一个DEFAULTCAPACITY_EMPTY_ELEMENTDATA的空数组。
    /** * Shared empty array instance used for default sized empty instances. We * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when * first element is added. */
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /** * Constructs an empty list with an initial capacity of ten. */
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }
  • 第二个构造方法是通过定义长度,为内置的elementData初始化,长度为initialCapacity,长度不能为负数。
    /** * Constructs an empty list with the specified initial capacity. * * @param initialCapacity the initial capacity of the list * @throws IllegalArgumentException if the specified initial capacity * is negative */
    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }
  • 根据另外一个数据集合,为内置的elementData初始化,把集合中的数据拷贝到elementData中。
    /** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. * * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */
    public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        if ((size = elementData.length) != 0) {
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            if (elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            // replace with empty array.
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }

3.2 增加元素

为数据增加元素的方法有四个:

  • 将指定的元素添加到此列表的尾部。
    /** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return <tt>true</tt> (as specified by {@link Collection#add}) */
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }

代码比较简单,就是先调用ensureCapacityInternal,通过Arrays类的copyOf方法把旧数组拷贝到一个长度比旧数组大1的新数组中去(其实我们看来就是旧数组的长度加1,但我们都知道数组不是变长的,所有只能使用拷贝创建新数组的方式来实现变长的功能),然后再把新的元素添加到数组最后一个位置。
当然,我们看到grow方法中,可能不是把数组的容量增大。旧数组的长度和新数组的长度是一样的,数组本身尾部的一些位置都是空闲的,因为ArrayList作了移除元素的操作。

 private void ensureCapacityInternal(int minCapacity) {
      if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
          minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
      }

      ensureExplicitCapacity(minCapacity);
  }

  private void ensureExplicitCapacity(int minCapacity) {
      modCount++;

      // overflow-conscious code
      if (minCapacity - elementData.length > 0)
          grow(minCapacity);
  }

  /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */
  private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

  /** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */
  private void grow(int minCapacity) {
      // overflow-conscious code
      int oldCapacity = elementData.length;
      int newCapacity = oldCapacity + (oldCapacity >> 1);
      if (newCapacity - minCapacity < 0)
          newCapacity = minCapacity;
      if (newCapacity - MAX_ARRAY_SIZE > 0)
          newCapacity = hugeCapacity(minCapacity);
      // minCapacity is usually close to size, so this is a win:
      elementData = Arrays.copyOf(elementData, newCapacity);
  }
  • 将指定的元素插入此列表中的指定位置。
    /** * Inserts the specified element at the specified position in this * list. Shifts the element currently at that position (if any) and * any subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */
    public void add(int index, E element) {
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        elementData[index] = element;
        size++;
    }

首先判断index位置的合法性:

private void rangeCheckForAdd(int index) {
    if (index < 0 || index > this.size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

然后和前一个方法一样,在ensureCapacityInternal方法里面,使用数组的长度加1。
这里再通过System.arraycopy对数组再一次进行拷贝。与Arrays.copyOf不同的是,System.arraycopy只是把index位置及其后面的元素,拷贝到数组的index+1及其后面的位置中,也就是把index及其后面的元素全部后移一位。
最后,把新的元素放到数组的index位置。

public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int length)

参数
src -- 这是源数组.
srcPos -- 这是源数组中的起始位置。
dest -- 这是目标数组。
destPos -- 这是目标数据中的起始位置。
length -- 这是一个要复制的数组元素的数目。
  • 按照指定集合的迭代器所返回的元素顺序,将该集合中的所有元素添加到此列表的尾部。
    /**
     * Appends all of the elements in the specified collection to the end of
     * this list, in the order that they are returned by the
     * specified collection's Iterator.  The behavior of this operation is
     * undefined if the specified collection is modified while the operation
     * is in progress.  (This implies that the behavior of this call is
     * undefined if the specified collection is this list, and this
     * list is nonempty.)
     *
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }

理解了前面两个方法后,这个方法就比较容易了。先获取增加进来的集合的数量numNew,使用数组的长度加numNew ,再通过System.arraycopy把集合中所以的元素增加到数组后面的位置中。

  • 从指定的位置开始,将指定集合中的所有元素插入到此列表中。
    /** * Inserts all of the elements in the specified collection into this * list, starting at the specified position. Shifts the element * currently at that position (if any) and any subsequent elements to * the right (increases their indices). The new elements will appear * in the list in the order that they are returned by the * specified collection's iterator. * * @param index index at which to insert the first element from the * specified collection * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount

        int numMoved = size - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }

和前面那些方法基本原理是一样的,只是过程中需要判断插入的位置,如果插入的位置刚好在原数组的尾部,那我们直接添加到后面就好。如果不在尾部,那就把原数组index位置及后面的元素,通过System.arraycopy,往后移numNew位,再把集合中的元素添加到index及后面的位置即可。

注意:所有增加元素的方法中,都会使ArrayList的size属性发生变化。

3.3 替换元素

用指定的元素替代此列表中指定位置上的元素。

    /** * Replaces the element at the specified position in this list with * the specified element. * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws IndexOutOfBoundsException {@inheritDoc} */
    public E set(int index, E element) {
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

很简单,先通过rangeCheck判断index这个位置是否是合法的。然后把新的元素放到index位置,返回旧元素。

    private void rangeCheck(int index) {
        if (index < 0 || index >= this.size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

3.4 移除元素

移除元素的方法有6个:

  • 移除此列表中指定位置上的元素。
    /** * Removes the element at the specified position in this list. * Shifts any subsequent elements to the left (subtracts one from their * indices). * * @param index the index of the element to be removed * @return the element that was removed from the list * @throws IndexOutOfBoundsException {@inheritDoc} */
    public E remove(int index) {
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }

在判断index的合法性后,判断index的位置,如果index是最后一个元素,直接把此位置的元素位置设置为空。如果不是,则把这个元素之后的元素都往前移一位,然后把最后一个位置设置为空。

  • 移除此列表中首次出现的指定元素(如果存在)。
    /**
     * Removes the first occurrence of the specified element from this list,
     * if it is present.  If the list does not contain the element, it is
     * unchanged.  More formally, removes the element with the lowest index
     * <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
     * (if such an element exists).  Returns <tt>true</tt> if this list
     * contained the specified element (or equivalently, if this list
     * changed as a result of the call).
     *
     * @param o element to be removed from this list, if present
     * @return <tt>true</tt> if this list contained the specified element
     */
    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
 return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
 return true;
                }
        }
 return false;
    }

    /*
     * Private remove method that skips bounds checking and does not
     * return the value removed.
     */
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }

在这个移除方法中,最要是为了找出要移除元素出现的第一个位置(假如存在)。然后再使用fastRemove将这个位置的元素移除掉。
这里的fastRemove(int index)方法与前面的remove(int index)基本相同,只是少了检查index的合法性及返回值而已。

  • 移除列表中索引在 fromIndex(包括)和 toIndex(不包括)之间的所有元素。
    /**
     * Removes from this list all of the elements whose index is between
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
     * Shifts any succeeding elements to the left (reduces their index).
     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
     * (If {@code toIndex==fromIndex}, this operation has no effect.)
     *
     * @throws IndexOutOfBoundsException if {@code fromIndex} or
     *         {@code toIndex} is out of range
     *         ({@code fromIndex < 0 ||
     *          fromIndex >= size() ||
     *          toIndex > size() ||
     *          toIndex < fromIndex})
     */
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }

这里很简单,把toIndex位置及其后的元素,移到fromIndex及其后面的位置上,再后面的位置全部清空。

  • 移除此列表中包含着指定集合里的元素(如果存在)
    /**
     * Removes from this list all of its elements that are contained in the
     * specified collection.
     *
     * @param c collection containing elements to be removed from this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean removeAll(Collection<?> c) {
        Objects.requireNonNull(c);
 return batchRemove(c, false);
    }
  • 移除此列表中除指定集合里的元素之外的元素
    /**
     * Retains only the elements in this list that are contained in the
     * specified collection.  In other words, removes from this list all
     * of its elements that are not contained in the specified collection.
     *
     * @param c collection containing elements to be retained in this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean retainAll(Collection<?> c) {
        Objects.requireNonNull(c);
 return batchRemove(c, true);
    }

上面两个方法都很简单,都是先判断集合参数是否为空,然后调用batchRemove来作数据的移除。
batchRemove方法的complement参数用于判断是保留集合元素或删除集合元素。

    private boolean batchRemove(Collection<?> c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if (r != size) {
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                w += size - r;
            }
            if (w != size) {
                // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }
  • 移除此列表中的所有元素。
    /** * Removes all of the elements from this list. The list will * be empty after this call returns. */
    public void clear() {
        modCount++;

        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    }

这方法就更简单了,就是把数组所有位置都设置为空。

注意:所有移除元素的方法中,都会使ArrayList的size属性发生变化。

3.5 获取元素

获取ArrayList元素的方法也有两种:

  • 返回此列表中指定位置上的元素。
    // Positional Access Operations

    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

    /** * Returns the element at the specified position in this list. * * @param index index of the element to return * @return the element at the specified position in this list * @throws IndexOutOfBoundsException {@inheritDoc} */
    public E get(int index) {
        rangeCheck(index);

        return elementData(index);
    }

检查完index的合法性后,直接根据index坐标返回内置数组位置的元素。

  • 通过Iterator接口实现来获取元素。

这种方式常用于列表元素的遍历。

    /** * Returns an iterator over the elements in this list in proper sequence. * * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @return an iterator over the elements in this list in proper sequence */
    public Iterator<E> iterator() {
        return new Itr();
    }

iterator方法会创建一个Iterator接口实现对象。
ArrrayList内置的Iterator接口实现(如下),是通过游标cursor的方式来确定列表的访问的当前位置,然后通过cursor作为数组下标来获取或者移除列表元素。

/** * An optimized version of AbstractList.Itr */
private class Itr implements Iterator<E> {
    int cursor;       // index of next element to return
    int lastRet = -1; // index of last element returned; -1 if no such
    int expectedModCount = modCount;

    public boolean hasNext() {
        return cursor != size;
    }

    @SuppressWarnings("unchecked")
    public E next() {
        checkForComodification();
        int i = cursor;
        if (i >= size)
            throw new NoSuchElementException();
        Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length)
            throw new ConcurrentModificationException();
        cursor = i + 1;
        return (E) elementData[lastRet = i];
    }

    public void remove() {
        if (lastRet < 0)
            throw new IllegalStateException();
        checkForComodification();

        try {
            ArrayList.this.remove(lastRet);
            cursor = lastRet;
            lastRet = -1;
            expectedModCount = modCount;
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }

    @Override
    @SuppressWarnings("unchecked")
    public void forEachRemaining(Consumer<? super E> consumer) {
        Objects.requireNonNull(consumer);
        final int size = ArrayList.this.size;
        int i = cursor;
        if (i >= size) {
            return;
        }
        final Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length) {
            throw new ConcurrentModificationException();
        }
        while (i != size && modCount == expectedModCount) {
            consumer.accept((E) elementData[i++]);
        }
        // update once at end of iteration to reduce heap write traffic
        cursor = i;
        lastRet = i - 1;
        checkForComodification();
    }

    final void checkForComodification() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
    }
}

/** * An optimized version of AbstractList.ListItr */
private class ListItr extends Itr implements ListIterator<E> {
    ListItr(int index) {
        super();
        cursor = index;
    }

    public boolean hasPrevious() {
        return cursor != 0;
    }

    public int nextIndex() {
        return cursor;
    }

    public int previousIndex() {
        return cursor - 1;
    }

    @SuppressWarnings("unchecked")
    public E previous() {
        checkForComodification();
        int i = cursor - 1;
        if (i < 0)
            throw new NoSuchElementException();
        Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length)
            throw new ConcurrentModificationException();
        cursor = i;
        return (E) elementData[lastRet = i];
    }

    public void set(E e) {
        if (lastRet < 0)
            throw new IllegalStateException();
        checkForComodification();

        try {
            ArrayList.this.set(lastRet, e);
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }

    public void add(E e) {
        checkForComodification();

        try {
            int i = cursor;
            ArrayList.this.add(i, e);
            cursor = i + 1;
            lastRet = -1;
            expectedModCount = modCount;
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }
}

3.6 其它方法

  • 返回此列表中首次出现的指定元素的索引
    /**
     * Returns the index of the first occurrence of the specified element
     * in this list, or -1 if this list does not contain the element.
     * More formally, returns the lowest index <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     */
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
 return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
 return i;
        }
 return -1;
    }

如果没有提定元素则返回-1。

  • 如果此列表中包含指定的元素
    /**
     * Returns <tt>true</tt> if this list contains the specified element.
     * More formally, returns <tt>true</tt> if and only if this list contains
     * at least one element <tt>e</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
     *
     * @param o element whose presence in this list is to be tested
     * @return <tt>true</tt> if this list contains the specified element
     */
    public boolean contains(Object o) {
 return indexOf(o) >= 0;
    }

如果找得到此列表中首次出现的指定元素的索引,说明是包含指定元素。

  • 返回此列表中的元素数。
    /** * Returns the number of elements in this list. * * @return the number of elements in this list */
    public int size() {
        return size;
    }

我们在前面增加和移除列表元素的时候都会使用size发生变化。ArrayList是通过size来记录元素的个数的。
为什么我们不是返回内置数组elementData的长度呢?很明显,ArrayList做移除操作的时候,只是把最后位置设置为空,则不是把长度减短。

  • 列表中是否有元素
    /** * Returns <tt>true</tt> if this list contains no elements. * * @return <tt>true</tt> if this list contains no elements */
    public boolean isEmpty() {
        return size == 0;
    }

3.7 关于RandomAccess接口

List 实现所使用的标记接口,用来表明其支持快速(通常是固定时间)随机访问。此接口的主要目的是允许一般的算法更改其行为,从而在将其应用到随机或连续访问列表时能提供良好的性能。

将操作随机访问列表的最佳算法(如 ArrayList)应用到连续访问列表(如 LinkedList)时,可产生二次项的行为。如果将某个算法应用到连续访问列表,那么在应用可能提供较差性能的算法前,鼓励使用一般的列表算法检查给定列表是否为此接口的一个 instanceof,如果需要保证可接受的性能,还可以更改其行为。

现在已经认识到,随机和连续访问之间的区别通常是模糊的。例如,如果列表很大时,某些 List 实现提供渐进的线性访问时间,但实际上是固定的访问时间。这样的 List 实现通常应该实现此接口。实际经验证明,如果是下列情况,则 List 实现应该实现此接口,即对于典型的类实例而言,此循环:

for (int i=0, n=list.size(); i < n; i++)
         list.get(i);

的运行速度要快于以下循环:

for (Iterator i=list.iterator(); i.hasNext(); )
         i.next();

如通过Collection.shuffle()随机打乱一个顺序数组,JDK判断如果集合属于RandomAccess,则通过简单的for循环遍历数组,而不属于RandomAccess的话,则使用ListIterator来遍历。

    /** * Randomly permute the specified list using the specified source of * randomness. All permutations occur with equal likelihood * assuming that the source of randomness is fair.<p> * * This implementation traverses the list backwards, from the last element * up to the second, repeatedly swapping a randomly selected element into * the "current position". Elements are randomly selected from the * portion of the list that runs from the first element to the current * position, inclusive.<p> * * This method runs in linear time. If the specified list does not * implement the {@link RandomAccess} interface and is large, this * implementation dumps the specified list into an array before shuffling * it, and dumps the shuffled array back into the list. This avoids the * quadratic behavior that would result from shuffling a "sequential * access" list in place. * * @param list the list to be shuffled. * @param rnd the source of randomness to use to shuffle the list. * @throws UnsupportedOperationException if the specified list or its * list-iterator does not support the <tt>set</tt> operation. */
    @SuppressWarnings({"rawtypes", "unchecked"})
    public static void shuffle(List<?> list, Random rnd) {
        int size = list.size();
        if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
            for (int i=size; i>1; i--)
                swap(list, i-1, rnd.nextInt(i));
        } else {
            Object arr[] = list.toArray();

            // Shuffle array
            for (int i=size; i>1; i--)
                swap(arr, i-1, rnd.nextInt(i));

            // Dump array back into list
            // instead of using a raw type here, it's possible to capture
            // the wildcard but it will require a call to a supplementary
            // private method
            ListIterator it = list.listIterator();
            for (int i=0; i<arr.length; i++) {
                it.next();
                it.set(arr[i]);
            }
        }
    }

关于这个访问速度的问题,可以参考:http://blog.csdn.net/keda8997110/article/details/8635005

4、说明

  1. Vector的整个实现与ArrayList基本相似,只是在对一些操作性的方法上加上了synchronized关键字,使之在线程上是安全的。
  2. 本文中源码大部分来源于JDK1.8。

你可能感兴趣的:(vector,ArrayList,java源码,java-src,RandomAcce)