一:基本
Verilog中的变量有线网类型和寄存器类型。线网型变量综合成wire,而寄存器可能综合成WIRE,锁存器和触发器。
二:verilog语句结构到门级的映射
- 连续性赋值:assign
连续性赋值语句逻辑结构上就是将等式右边的驱动左边的结点。因些连续性赋值的目标结点总是综合成由组合逻辑驱动的结点。Assign语句中的延时综合时都将忽视。
- 过程性赋值:
过程性赋值只出现在always语句中。
阻塞赋值和非阻塞赋值就该赋值本身是没有区别的,只是对后面的语句有不同的影响。
建议设计组合逻辑电路时用阻塞赋值,设计时序电路时用非阻塞赋值。
过程性赋值的赋值对象有可能综合成wire,latch,和flip-flop,取决于具体状况。如,时钟控制下的非阻塞赋值综合成flip-flop。
过程性赋值语句中的任何延时在综合时都将忽略。
建议同一个变量单一地使用阻塞或者非阻塞赋值。
- 逻辑操作符:
逻辑操作符对应于硬件中已有的逻辑门
- 算术操作符:
Verilog中将reg视为有符号数,而integer视为有符号数。因此,进行有符号操作时使用integer,使用无符号操作时使用reg。
- 进位:
通常会将进行运算操作的结果比原操作数扩展一位,用来存放进位或者借位。如:
Wire [3:0] A,B;
Wire [4:0] C;
Assign C=A+B;
C的最高位用来存放进位。
- 关系运算符:
关系运算符:<,>,<=,>=
和算术操作符一样,可以进行有符号和无符号运算,取决于数据类型是reg ,net还是integer。
- 相等运算符:==,!=
注意:===和!==是不可综合的。
可以进行有符号或无符号操作,取决于数据类型
- 移位运算符:
左移,右移,右边操作数可以是常数或者是变量,二者综合出来的结果不同。
- 部分选择:
部分选择索引必须是常量。
- BIT选择:
BIT选择中的索引可以用变量,这样将综合成多路(复用)器。
- 敏感表:
Always过程中,所有被读取的数据,即等号右边的变量都要应放在敏感表中,不然,综合时不能正确地映射到所用的门。
- IF:
如果变量没有在IF语句的每个分支中进行赋值,将会产生latch。如果IF语句中产生了latch,则IF的条件中最好不要用到算术操作。Case语句类似。Case的条款可以是变量。如果一个变量在同一个IF条件分支中先赎值然后读取,则不会产生latch。如果先读取,后赎值,则会产生latch。
- 循环:
只有for-loop语句是可以综合的。
- 设计时序电路时,建议变量在always语句中赋值,而在该always语句外使用,使综合时能准确地匹配。建议不要使用局部变量。
- 不能在多个always块中对同一个变量赎值
- 函数
函数代表一个组合逻辑,所有内部定义的变量都是临时的,这些变量综合后为wire。
- 任务:
任务可能是组合逻辑或者时序逻辑,取决于何种情况下调用任务。
- Z:
Z会综合成一个三态门,必须在条件语句中赋值
- 参数化设计:
优点:参数可重载,不需要多次定义模块
三:模块优化
- 资源共享:
当进程涉及到共用ALU时,要考虑资源分配问题。可以共享的操作符主要有:关系操作符、加减乘除操作符。通常乘和加不共用ALU,乘除通常在其内部共用。
- 共用表达式:
如:C=A+B;
D=G+(A+B);
两者虽然有共用的A+B,但是有些综合工具不能识别.可以将第二句改为:D=G+C;这样只需两个加法器.
- 转移代码:
如循环语句中没有发生变化的语句移出循环.
- 避免latch:
两种方法:1、在每一个IF分支中对变量赋值。2、在每一个IF语句中都对变量赋初值。
- 模块:
综合生成的存储器如ROM或RAM不是一种好方法。最好用库自带的存储器模块。
四、验证:
- 敏感表:
在always语句中,如果敏感表不含时钟,最好将所有的被读取的信号都放在敏感表中。
- 异步复位:
建议不要在异步时对变量读取,即异步复位时,对信号赎以常数值。
可综合模型的结构
如果程序只用于仿真,那么几乎所有的语法和编程语句都可以使用。但如果程序是用于硬件实现,那么我们就必须保证程序的可综合性,即所编写的程序能被综合器转化为相应的电路结构。不可综合的HDL语句在用综合工具综合时将被忽略或者报错。作为设计者,应该对可综合模型的结构有所了解。
虽然不同的综合工具对Verilog HDL语法结构的支持不尽相同,但Verilog HDL中某些典型的结构是很明确地被所有综合工具支持或不支持的。
(1)所有综合工具都支持的结构:always,assign,begin,end,case,wire,tri,aupply0,supply1,reg,integer,default,for,function,and,nand,or,nor,xor,xnor,buf,not,bufif0,bufif1,notif0,notif1,if,inout,input,instantitation,module,negedge,posedge,operators,output,parameter。
(2)所有综合工具都不支持的结构:time,defparam,$finish,fork,join,initial,delays,UDP,wait。
(3)有些工具支持有些工具不支持的结构:casex,casez,wand,triand,wor,trior,real,disable,forever,arrays,memories,repeat,task,while。
因此,要编写出可综合的模型,应尽量采用所有综合工具都支持的结构来描述,这样才能保证设计的正确性和缩短设计周期。
建立可综合模型的原则
要保证Verilog HDL赋值语句的可综合性,在建模时应注意以下要点:
(1)不使用初始化语句。
(2)不使用带有延时的描述。
(3)不使用循环次数不确定的循环语句,如forever、while等。
(4)不使用用户自定义原语(UDP元件)。
(5)尽量使用同步方式设计电路。
(6)除非是关键路径的设计,一般不采用调用门级元件来描述设计的方法,建议采用行为语句来完成设计。
(7)用always过程块描述组合逻辑,应在敏感信号列表中列出所有的输入信号。
(8)所有的内部寄存器都应该能够被复位,在使用FPGA实现设计时,应尽量使用器件的全局复位端作为系统总的复位。
(9)对时序逻辑描述和建模,应尽量使用非阻塞赋值方式。对组合逻辑描述和建模,既可以用阻塞赋值,也可以用非阻塞赋值。但在同一个过程块中,最好不要同时用阻塞赋值和非阻塞赋值。
(10)不能在一个以上的always过程块中对同一个变量赋值。而对同一个赋值对象不能既使用阻塞式赋值,又使用非阻塞式赋值。
(11)如果不打算把变量推导成锁存器,那么必须在if语句或case语句的所有条件分支中都对变量明确地赋值。
(12)避免混合使用上升沿和下降沿触发的触发器。
(13)同一个变量的赋值不能受多个时钟控制,也不能受两种不同的时钟条件(或者不同的时钟沿)控制。
(14)避免在case语句的分支项中使用x值或z值。
阻塞与非阻塞
建议在时序逻辑建模时使用非阻塞式赋值。因为对于阻塞式赋值来说,赋值语句的顺序对最后的综合结果有着直接的影响,设计者稍不留意就会使综合结果与设计本意大相径庭。而如果采用非阻塞式赋值,则可以不考虑赋值语句的排列顺序,只需将其连接关系描述清楚即可。如下面的模型:
always @ (posedge clkA) //Label AwA
… = DataOut; //读DataOut的值
always @ (posedge clkA) //Label AwB
DataOut <= …; //采用非阻塞式赋值
如果将上述模型改为阻塞式赋值“DataOut = …”,按照程序中的书写顺序模拟这些always语句,在clkA上升沿处,always语句AwA读取了DataOut的当前值,然后always语句AwB再向DataOut赋新值。如果颠倒了这两条always语句的顺序(或仿真器选择重新排定这两条always语句的执行顺序),那么先执行always语句AwB,导致零时间内将新值赋给DataOut,随后always语句AwA读取的便是更新后的DataOut值。这看起来是由于always语句都可以执行时,向DataOut的赋值是在零时间内发生并完成的。因此根据先执行哪一条always语句,AwA中读取的DataOut值可能是其原值,也可能是其新值。
使用非阻塞赋值就可以消除这种仿真行为的依赖性,这时,读取DataOut发生在当前时刻,而在当前仿真周期结束时(即所有的变量读取都已完成)才将新值赋给DataOut。这样上述模型的行为不再受always语句执行顺序的影响。因此,在某条always语句内对变量赋值而在该always语句外读取变量,那么赋值语句应是非阻塞式赋值。