十八、图算法之最短路径

最短路径

这里基于的是加权有向图的讨论,而且是单源最短路径问题。我们称为最短路径的结果是一棵最短路径树。

给定一幅加权有向图和一个顶点s,以s为起点的一棵最短路径树是图的一幅子图,它包含s和从s可达的所有顶点。这棵有向树的根节点为s,树的每条路径(到每个点的每条路径)都是有向图中的一条最短路径。

加权有向图的数据结构

有向边类:

public class EdgeWeightedDigraph {
    private static final String NEWLINE = System.getProperty("line.separator");

    private final int V;                // number of vertices in this digraph
    private int E;                      // number of edges in this digraph
    private Bag<DirectedEdge>[] adj;    // adj[v] = adjacency list for vertex v
    private int[] indegree;             // indegree[v] = indegree of vertex v
    public EdgeWeightedDigraph(int V) {
        if (V < 0) throw new IllegalArgumentException("Number of vertices in a Digraph must be nonnegative");
        this.V = V;
        this.E = 0;
        this.indegree = new int[V];
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }
    public EdgeWeightedDigraph(int V, int E) {
        this(V);
        if (E < 0) throw new IllegalArgumentException("Number of edges in a Digraph must be nonnegative");
        for (int i = 0; i < E; i++) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            double weight = .01 * StdRandom.uniform(100);
            DirectedEdge e = new DirectedEdge(v, w, weight);
            addEdge(e);
        }
    }
    public EdgeWeightedDigraph(In in) {
        this(in.readInt());
        int E = in.readInt();
        if (E < 0) throw new IllegalArgumentException("Number of edges must be nonnegative");
        for (int i = 0; i < E; i++) {
            int v = in.readInt();
            int w = in.readInt();
            if (v < 0 || v >= V) throw new IndexOutOfBoundsException("vertex " + v + " is not between 0 and " + (V-1));
            if (w < 0 || w >= V) throw new IndexOutOfBoundsException("vertex " + w + " is not between 0 and " + (V-1));
            double weight = in.readDouble();
            addEdge(new DirectedEdge(v, w, weight));
        }
    }
    public EdgeWeightedDigraph(EdgeWeightedDigraph G) {
        this(G.V());
        this.E = G.E();
        for (int v = 0; v < G.V(); v++)
            this.indegree[v] = G.indegree(v);
        for (int v = 0; v < G.V(); v++) {
            // reverse so that adjacency list is in same order as original
            Stack<DirectedEdge> reverse = new Stack<DirectedEdge>();
            for (DirectedEdge e : G.adj[v]) {
                reverse.push(e);
            }
            for (DirectedEdge e : reverse) {
                adj[v].add(e);
            }
        }
    }
    public int V() {
        return V;
    }
    public int E() {
        return E;
    }
    // throw an IndexOutOfBoundsException unless 0 <= v < V
    private void validateVertex(int v) {
        if (v < 0 || v >= V)
            throw new IndexOutOfBoundsException("vertex " + v + " is not between 0 and " + (V-1));
    }
    public void addEdge(DirectedEdge e) {
        int v = e.from();
        int w = e.to();
        validateVertex(v);
        validateVertex(w);
        adj[v].add(e);
        indegree[w]++;
        E++;
    }
    public Iterable<DirectedEdge> adj(int v) {
        validateVertex(v);
        return adj[v];
    }
    public int outdegree(int v) {
        validateVertex(v);
        return adj[v].size();
    }
    public int indegree(int v) {
        validateVertex(v);
        return indegree[v];
    }
    public Iterable<DirectedEdge> edges() {
        Bag<DirectedEdge> list = new Bag<DirectedEdge>();
        for (int v = 0; v < V; v++) {
            for (DirectedEdge e : adj(v)) {
                list.add(e);
            }
        }
        return list;
    } 
    public String toString() {
        StringBuilder s = new StringBuilder();
        s.append(V + " " + E + NEWLINE);
        for (int v = 0; v < V; v++) {
            s.append(v + ": ");
            for (DirectedEdge e : adj[v]) {
                s.append(e + " ");
            }
            s.append(NEWLINE);
        }
        return s.toString();
    }
}

Dijstra算法(有向,无负边)

要求权重非负,算法很简单,不再赘述
复杂度: 空间与V成正比,时间与ElogV成正比
内部使用了索引优先队列

public class DijkstraSP {
    private double[] distTo;          // distTo[v] = distance of shortest s->v path
    private DirectedEdge[] edgeTo;    // edgeTo[v] = last edge on shortest s->v path
    private IndexMinPQ<Double> pq;    // priority queue of vertices
    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        for (DirectedEdge e : G.edges()) {
            if (e.weight() < 0)
                throw new IllegalArgumentException("edge " + e + " has negative weight");
        }
        distTo = new double[G.V()];
        edgeTo = new DirectedEdge[G.V()];
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        // relax vertices in order of distance from s
        pq = new IndexMinPQ<Double>(G.V());
        pq.insert(s, distTo[s]);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }

        // check optimality conditions
        assert check(G, s);
    }
    // relax edge e and update pq if changed
    private void relax(DirectedEdge e) {
        int v = e.from(), w = e.to();
        if (distTo[w] > distTo[v] + e.weight()) {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
            if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
            else                pq.insert(w, distTo[w]);
        }
    }
    public double distTo(int v) {
        return distTo[v];
    }
    public boolean hasPathTo(int v) {
        return distTo[v] < Double.POSITIVE_INFINITY;
    }
    public Iterable<DirectedEdge> pathTo(int v) {
        if (!hasPathTo(v)) return null;
        Stack<DirectedEdge> path = new Stack<DirectedEdge>();
        for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
            path.push(e);
        }
        return path;
    }
    // check optimality conditions:
    // (i) for all edges e: distTo[e.to()] <= distTo[e.from()] + e.weight()
    // (ii) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight()
    private boolean check(EdgeWeightedDigraph G, int s) {
        // check that edge weights are nonnegative
        for (DirectedEdge e : G.edges()) {
            if (e.weight() < 0) {
                System.err.println("negative edge weight detected");
                return false;
            }
        }
        // check that distTo[v] and edgeTo[v] are consistent
        if (distTo[s] != 0.0 || edgeTo[s] != null) {
            System.err.println("distTo[s] and edgeTo[s] inconsistent");
            return false;
        }
        for (int v = 0; v < G.V(); v++) {
            if (v == s) continue;
            if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) {
                System.err.println("distTo[] and edgeTo[] inconsistent");
                return false;
            }
        }
        // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
        for (int v = 0; v < G.V(); v++) {
            for (DirectedEdge e : G.adj(v)) {
                int w = e.to();
                if (distTo[v] + e.weight() < distTo[w]) {
                    System.err.println("edge " + e + " not relaxed");
                    return false;
                }
            }
        }
        // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
        for (int w = 0; w < G.V(); w++) {
            if (edgeTo[w] == null) continue;
            DirectedEdge e = edgeTo[w];
            int v = e.from();
            if (w != e.to()) return false;
            if (distTo[v] + e.weight() != distTo[w]) {
                System.err.println("edge " + e + " on shortest path not tight");
                return false;
            }
        }
        return true;
    }
}

无环加权有向图中的最短路径算法

无环,能有负边,比Dijstra算法快
按照拓扑排序(详见之前博客)更新权值

按照拓扑排序更新权值,就能在和E+V成正比的时间内解决无环加权有向图的电源最短路径问题
public class AcyclicSP {
    private double[] distTo;         // distTo[v] = distance of shortest s->v path
    private DirectedEdge[] edgeTo;   // edgeTo[v] = last edge on shortest s->v path
    public AcyclicSP(EdgeWeightedDigraph G, int s) {
        distTo = new double[G.V()];
        edgeTo = new DirectedEdge[G.V()];
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        // visit vertices in toplogical order
        Topological topological = new Topological(G);
        if (!topological.hasOrder())
            throw new IllegalArgumentException("Digraph is not acyclic.");
        for (int v : topological.order()) {
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
    // relax edge e
    private void relax(DirectedEdge e) {
        int v = e.from(), w = e.to();
        if (distTo[w] > distTo[v] + e.weight()) {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
        }       
    }
    public double distTo(int v) {
        return distTo[v];
    }
    public boolean hasPathTo(int v) {
        return distTo[v] < Double.POSITIVE_INFINITY;
    }
    public Iterable<DirectedEdge> pathTo(int v) {
        if (!hasPathTo(v)) return null;
        Stack<DirectedEdge> path = new Stack<DirectedEdge>();
        for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
            path.push(e);
        }
        return path;
    }
}

无环加权有向图中的最长路径算法

放松边的那个符号反过来就行了,初始化要改成负无穷

public class AcyclicLP {
    private double[] distTo;          // distTo[v] = distance of longest s->v path
    private DirectedEdge[] edgeTo;    // edgeTo[v] = last edge on longest s->v path
    public AcyclicLP(EdgeWeightedDigraph G, int s) {
        distTo = new double[G.V()];
        edgeTo = new DirectedEdge[G.V()];
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.NEGATIVE_INFINITY;
        distTo[s] = 0.0;
        // relax vertices in toplogical order
        Topological topological = new Topological(G);
        if (!topological.hasOrder())
            throw new IllegalArgumentException("Digraph is not acyclic.");
        for (int v : topological.order()) {
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
    // relax edge e, but update if you find a *longer* path
    private void relax(DirectedEdge e) {
        int v = e.from(), w = e.to();
        if (distTo[w] < distTo[v] + e.weight()) {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
        }       
    }
    public double distTo(int v) {
        return distTo[v];
    }
    public boolean hasPathTo(int v) {
        return distTo[v] > Double.NEGATIVE_INFINITY;
    }
    public Iterable<DirectedEdge> pathTo(int v) {
        if (!hasPathTo(v)) return null;
        Stack<DirectedEdge> path = new Stack<DirectedEdge>();
        for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
            path.push(e);
        }
        return path;
    }
}

一个应用:平行任务调度

你可能感兴趣的:(十八、图算法之最短路径)