- [2025年最新]关于使用python和Java调用AI大模型
尤物程序猿
pythonjava人工智能
一、AI算法的核心概念与原理AI算法,即人工智能算法,是让计算机模拟人类智能行为、从数据中学习并进行决策的一系列数学方法与规则集合。其核心目标是赋予机器从经验中学习、对未知情况做出合理判断与决策的能力。机器学习是AI算法的重要基础领域,它使计算机能基于数据进行学习并改进性能。监督学习作为机器学习的关键分支,依靠已标记数据进行模型训练。例如在图像分类任务中,为算法提供大量已标注好类别(如“猫”“狗”
- 探索图形编程的新篇章:Rust 和 OpenGL 教程
邬筱杉Lewis
探索图形编程的新篇章:Rust和OpenGL教程项目地址:https://gitcode.com/gh_mirrors/ru/rust-and-opengl-lessons在这个数字化的时代,图形编程已经成为许多领域的核心技能,从游戏开发到数据可视化,无处不在。Rust和OpenGL的组合为开发者提供了一种高效且安全的途径,来实现高性能的图形渲染。今天,我要向您推荐一个特别的开源项目——rust-
- C++ STL常用算法
会思想的苇草i
C++c++算法开发语言stl经验分享
C++STL常用算法STL-常用算法1常用遍历算法1.1for_each1.2transform2常用查找算法2.1find2.2find_if2.3adjacent_find2.4binary_search2.5count2.6count_if3常用排序算法3.1sort3.2random_shuffle3.3merge3.4reverse4常用拷贝和替换算法4.1copy4.2replace4
- 深入理解Trie树:高效处理字符串的利器
不语n
算法与数据结构算法数据结构
1.什么是Trie树?Trie树(字典树、前缀树)是一种树形数据结构,专门用于高效存储和检索字符串集合。它的核心特点是:每个节点代表一个字符。从根节点到某一节点的路径构成一个字符串。适用于前缀匹配、词频统计、自动补全等场景。2.Trie树的优势操作时间复杂度适用场景插入字符串O(L)动态添加新字符串查询字符串O(L)快速检查字符串是否存在前缀匹配O(L)搜索引擎、输入法自动补全(L为字符串长度)3
- 蓝桥杯备考---》贪心算法之矩阵消除游戏
无敌大饺子 dot
贪心算法游戏算法
我们第一次想到的贪心策略一定是找出和最大的行或者列来删除,每次都更新行和列比如如图这种情况,这种情况就不如直接删除两行的多,所以本贪心策略有误so我们可以枚举选的行的情况,然后再贪心的选择列和最大的列来做#include#include#includeusingnamespacestd;intn,m,k;typedeflonglongll;constintN=20;intsum;intcol[N]
- 探秘LibreTranslate:免费开源的翻译神器
救救孩子把
大模型AI开源项目机器翻译LibreTranslate翻译
最近有模型数据翻译的需求,找了一些翻译api、软件,不是收费就是太费劲,巴拉巴拉找到了LibreTranslate,用着还是不错https://github.com/LibreTranslate/LibreTranslate在线试用!先上下ai生成的简介:LibreTranslate是一款开源的机器翻译工具,以下是关于它的详细介绍:特点开源免费:LibreTranslate的源代码是公开的,遵循G
- 机器学习: LightGBM模型(优化版)——高效且强大的树形模型
秀儿还能再秀
机器学习决策树LightBMGGBDT
LightGBM(LightGradientBoostingMachine)是一种基于梯度提升决策树(GBDT)的框架,由微软提出。它具有高效的训练速度、低内存占用、支持并行和GPU加速等特点,非常适合大规模数据的训练任务,尤其在分类和回归任务中表现突出。LightGBM的核心原理可以从以下几个方面来理解:LightGBM模型特点(一)基于梯度提升的树模型LightGBM是一个梯度提升决策树(GB
- TF-IDF算法及sklearn实现
雪顶猫的鳄
pythontf-idf算法sklearnpython
一、TF-IDF算法介绍TF-IDF(termfrequency-inversedoumentfrequency,词频-逆向文档频率)是一种用于信息检索(informationretrieval)与文本挖掘(textmining)的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对与一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比的增加,但同时会
- TF-IDF算法详解
听风Q
NLPtf-idf算法深度学习nlp机器学习
文章目录TF-IDF算法TF-IDF算法介绍TF=>词频(TermFrequency)IDF=>逆向文件频率(InverseDocumentFrequency)TF-IDF实际上是:TF*IDFpython3实现NLTK实现Sklearn实现jiaba实现TF-IDF算法缺点TF-IWF算法TF-IDF算法TF-IDF算法介绍TF-IDF(termfrequency–inversedocument
- 外贸公司必看:跨境贸易进销存管理与财务优化指南
在当今全球化的商业环境中,外贸跨境贸易蓬勃发展,为众多企业带来了广阔的市场机遇。然而,随着业务规模的不断扩大,如何高效管理进销存和财务,成为了摆在外贸跨境企业面前的一道难题。这不仅关系到企业的日常运营效率,更直接影响着企业的盈利能力和市场竞争力。一、外贸跨境贸易中进销存与财务管理的挑战1、复杂的业务流程外贸跨境贸易涉及多个国家和地区,不同的法律法规、税收政策以及贸易习惯,使得业务流程变得极为复杂。
- 外贸攻略:国外客户迟迟不付款怎么办?有没有自动化催款工具
在国际贸易中,客户拖欠货款是许多外贸企业面临的共同难题。款项迟迟未到账不仅影响现金流,还可能打乱企业运营节奏。如何高效应对这一问题?本文将解析拖欠货款的常见原因,并推荐一款功能强大的自动化催款工具——ZohoBooks,助您轻松解决催款难题,保障资金安全回笼。一、国外客户拖欠货款的常见原因1、资金周转困难:客户可能因经济环境波动或自身经营问题导致资金链紧张。2、汇率波动影响:汇率变化可能导致客户付
- 算法之Java动态连通性问题:union-find算法解析
一杯年华@编程空间
算法精讲算法java性能优化
算法之Java动态连通性问题:union-find算法解析在编程的学习旅程中,不断探索新的算法和数据结构是提升能力的关键。今天,我们一起深入研究Java中处理动态连通性问题的union-find算法,从问题的定义、API的设计,到具体的算法实现,希望能和大家共同进步,让我们的编程技能更上一层楼!一、动态连通性问题与union-find算法概述在实际编程场景中,经常会遇到需要判断元素之间连接关系的问
- 面试题:Linux 系统基础 (二)
牛马程序员2025
linux运维服务器开发语言
面试题:Linux系统基础(二)Linux系统中的定时任务有哪些类型,它们是如何配置的?Linux系统中的定时任务主要有两种类型:Cron作业和at作业。1、Cron作业:使用crontab命令配置和管理。配置周期性执行的任务,如每天、每周或每月执行。编辑crontab文件指定执行时间和命令。2、At作业:使用at命令配置。用于一次性任务,指定在特定时间执行。使用atq和atrm命令查看和删除at
- python以图搜图api_以图搜图(二):python dHash算法
啟潍
python以图搜图api
differentHash算法dHash中文叫差异哈希算法,在对图片进行哈希转换时,通过左右两个像素大小的比较,得到最终哈希序列。相比于aHash算法。dHash速度快,判断效果也要好。实现过程缩小尺寸。将图片缩小为9*8大小,此时照片有72个像素点。灰度化处理。计算差异值,获得最后哈希值(与aHash主要区别处)。比较每行左右两个像素,如果左边的像素比右边的更亮(左边像素值大于右边像素值),则记
- 大模型提示优化|双模型协作优化:迭代效率飙升300%!破局人工试错的智能优化方案
CodePatentMaster
人工智能
颠覆性突破!百度智能提示优化技术让大模型迭代效率提升300%核心价值北京百度网讯科技通过双模型协作优化机制实现提示文本生成效率提升3倍,解决传统Prompt工程人力成本高、评估标准缺失的行业难题。一、技术原理深度剖析痛点定位传统Prompt优化存在三大致命缺陷:人工试错平均耗时72小时/次评估依赖黄金答案标注成本高复杂场景优化成功率不足40%算法突破采用双模型协作架构:LLM1(生成模型)→执行P
- 大模型训练|动态梯度压缩+混合精度架构:显存直降65%、效率飙升300%!攻克显存爆炸与带宽瓶颈
CodePatentMaster
架构
革命性创新!百度自研动态梯度压缩技术让大模型训练效率提升300%核心价值北京百度网讯科技有限公司通过动态梯度压缩算法(DynamicGradientCompression,DGC)与混合精度分布式训练框架,实现训练速度提升300%、显存占用降低65%,解决大模型训练中显存资源浪费与通信带宽瓶颈问题。一、技术原理深度剖析痛点定位当前大模型训练面临两大核心难题:显存占用过高:传统全精度训练(FP32)
- Hive优化高频面试题
lzhlizihang
hivehivehadoop面试题hive优化
文章目录一、开启本地模式二、explain分析sql语句三、修改Fetch操作四、开启hive的严格模式五、JVM重用六、分区、分桶以及压缩七、合理设置map和ruduce的数量八、设置并行执行九、CBO优化-成本优化器十、谓词下推十一、小表join大表--使用MapJoin十二、大表join大表--使用SMBJoin十三、列裁剪与分区裁剪十四、避免数据倾斜1、数据倾斜的表现2、数据倾斜的原因和解
- 二手车置换平台微信小程序系统源码独立部署
博纳软云家卫miui52086
嗖微miui52086微信小程序小程序uni-app微信公众平台微信
二手车置换平台小程序系统:基于ThinkPHP+Uniapp的生态化解决方案与SEO实战策略随着汽车消费市场的升级与循环经济理念的普及,二手车置换平台小程序系统已成为连接买家与卖家、激活存量车交易的核心工具。该系统通过整合车源发布、智能匹配、在线评估、交易担保等功能,构建了高效透明的二手车流通生态。依托ThinkPHP+Uniapp技术栈的稳定架构与跨端能力,平台不仅实现全流程数字化服务,更为搜索
- C/C++蓝桥杯算法真题打卡(Day5)
Exhausted、
蓝桥杯c语言c++蓝桥杯
一、P8772[蓝桥杯2022省A]求和-洛谷算法代码:#include//包含标准库中的所有头文件,方便编程usingnamespacestd;//使用标准命名空间,避免每次调用标准库函数时都要加std::intmain(){intn;//声明一个整数变量n,用于存储输入的整数个数cin>>n;//从标准输入读取n的值vectora(n);//声明一个大小为n的整数向量a,用于存储输入的n个整数
- hive相关面试题以及答案
酷爱码
编程学习分布式hive
什么是Hive?它的作用是什么?答:Hive是一个建立在Hadoop之上的数据仓库工具,它提供了类似于SQL的查询语言HiveQL来操作存储在Hadoop中的数据。Hive的主要作用是让用户能够使用SQL语法来查询和分析大规模数据集。Hive的架构是什么样的?答:Hive的架构主要包括三个关键组件:HiveQL、HiveMetastore和Hive执行引擎。HiveQL是用户使用的SQL查询语言,
- 多智能体协作|动态任务分解算法:复杂任务处理效率飙升200%!突破实时响应瓶颈的异步架构方案
CodePatentMaster
算法架构
颠覆性突破!百度多智能体协作技术让复杂任务处理效率提升200%[核心价值]北京百度网讯科技有限公司通过多智能体异步协作架构实现任务处理效率提升200%,解决大模型时代复杂任务拆解与实时反馈难题一、技术原理深度剖析痛点定位当前智能体技术面临三大挑战:全栈式处理瓶颈:单一智能体处理复杂任务时存在显存占用高、响应延迟大(传统方案延迟>5s)即时信息处理真空:87%的查询类任务需要实时外部验证(如餐厅订座
- 每日一博 - 一致性哈希:分布式系统的数据分配利器
小小工匠
【每日一博】哈希算法一致性哈希
文章目录概述1、一致性哈希算法的诞生背景2、一致性哈希的基本原理3、一致性哈希的优势和挑战4、虚拟节点的引入5、Java代码实现概述在现代分布式系统中,如何高效地将数据分布在多个服务器上,同时保证扩展性和容错性,是一个至关重要的问题。一致性哈希算法(ConsistentHashing)正是为了解决这些挑战而设计的。今天,我们来深入探讨这个经典的分布式算法,包括它的基本原理、优缺点,以及实际应用中的
- 目标检测YOLO实战应用案例100讲-交通目标数据集构建及高性能检测算法研究与应用
林聪木
目标检测YOLO算法
目录前言国内外研究现状目标检测研究现状目标检测数据集研究现状基于深度学习的通用目标检测方法2.1数据集构建2.2基于深度学习的目标检测框架2.2.1双阶段检测算法分析2.2.2YOLO系列单阶段检测算法分析2.3多标签分类检测交通多样化数据集构建3.1交通场景的特点3.2数据集构建准备3.2.1现有数据集特点3.2.2样本数据采集流程3.3基于LabelImg的标注优化工具3.3.1目标预检测功能
- Spring Boot整合Jasypt实现敏感信息加密
嘵奇
提升自己springboot后端java
精心整理了最新的面试资料和简历模板,有需要的可以自行获取点击前往百度网盘获取点击前往夸克网盘获取SpringBoot整合Jasypt实现敏感信息加密一、什么是Jasypt?Jasypt(JavaSimplifiedEncryption)是一个Java加密库,支持对配置文件中的敏感信息(如数据库密码、API密钥等)进行加密/解密。与SpringBoot整合后,可通过注解自动解密配置信息。二、整合步骤
- 计算机视觉技术的优势与挑战:深入探讨与未来展望
猿享天开
技术杂汇计算机视觉CV
目录计算机视觉技术的优势与挑战:深入探讨与未来展望计算机视觉技术的优势1.高效处理大量数据2.自动化和高精度3.实时应用4.多领域应用计算机视觉技术的挑战1.数据质量和多样性2.复杂场景和语义理解3.训练数据和算法设计4.隐私与安全问题未来展望1.数据增强与合成2.多模态学习3.轻量化模型4.隐私保护与安全保障结语计算机视觉(ComputerVision,CV)技术是一种利用计算机和算法来模拟和实
- 基于深度学习的烟雾检测系统——YOLOv5、YOLOv8、YOLOv10及UI界面的实现
深度学习YOLO目标检测实战项目
深度学习YOLOui人工智能分类
引言随着科技的进步,深度学习在计算机视觉中的应用得到了广泛的应用,尤其在烟雾检测领域,具有重要的意义。烟雾检测系统不仅有助于火灾的预防与早期发现,还在工业、交通等领域有着广泛的需求。近年来,YOLO(YouOnlyLookOnce)系列目标检测算法的快速发展,为烟雾检测提供了强大的支持。在本篇博客中,我们将深入探讨如何利用YOLOv5、YOLOv8、YOLOv10来构建一个高效的烟雾检测系统,并设
- STL新增内容
越甲八千
【道阻且长C++】【C++STL】c++算法开发语言
文章目录C++11中的STL新增内容容器算法C++14中的STL新增内容容器算法C++17中的STL新增内容容器算法C++20中的STL新增内容容器算法C++11中的STL新增内容容器std::array:这是一个固定大小的数组容器,和原生数组类似,但具备更好的接口与安全性。它在栈上分配内存,大小在编译时确定。#include#includeintmain(){std::arrayarr={1,2
- 计算机视觉(CV)技术的优势和挑战
编程在手天下我有
计算机视觉
计算机视觉(CV)技术是人工智能领域中的一个重要分支,它主要通过让机器学会“看”和“理解”图像或视频来模拟人类视觉系统。以下是计算机视觉技术的一些优势和挑战:优势:自动化:计算机视觉技术可以实现许多人类无法完成或难以完成的复杂视觉任务,如检测和识别大量图像、视频数据等。精度:借助深度学习等先进技术,计算机视觉系统可以在一定程度上实现精准的图像识别和分析,甚至超过人类的准确度。提高效率:应用计算机视
- 计算机视觉算法实战——烟雾检测
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.烟雾检测领域介绍烟雾检测是计算机视觉在公共安全领域的重要应用,它通过分析视频或图像序列中的视觉特征,自动识别烟雾的存在,为火灾预警提供关键技术支持。相比传统基于物理传感器的烟雾探测器,基于视觉的烟雾检测系统具有以下优势:监测范围广:单摄像头可覆盖大面积区域非接触式检测:无需近距离接
- C++位运算精要:高效解题的利器
星途码客
c++算法c++java算法
引言在算法竞赛和底层开发中,位运算(BitManipulation)因其极高的执行效率而广受青睐。它能在O(1)时间复杂度内完成某些复杂操作,大幅优化程序性能。本文系统梳理C++位运算的核心技巧,涵盖基础操作、经典应用、优化策略及实战例题,帮助读者掌握这一高效工具。一、位运算基础1.六大基本操作运算符名称示例(二进制)说明&按位与1010&1100=1000同1为1,否则为0|按位或1010|11
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D