POJ 1191 棋盘分割 简单记忆化dfs

题意:有8*8的棋盘每个格子有不超过100的数字(答案不会超int),现在想把棋盘分成n份,满足每个分割线要沿着边界,问最后使得均方差最小。
题解:把原式化简,即为sqrt (dp[1][1][8][8][n]  * 1.0 / n - ave * ave ),想到dp[x1][x2][y1][y2][num]表示把整个棋盘分成num份得到的最小平方和是多少,
         很容易想到记忆化dfs,枚举当前横竖切割的位置,然后就没有然后了。

Sure原创,转载请注明出处。

#include <iostream>
#include <cstdio>
#include <memory.h>
#include <cmath>
#define MIN(a , b) ((a) < (b) ? (a) : (b))
using namespace std;
const int inf = 1 << 29;
const int maxn = 16;
int map[10][10],sum[10][10],dp[10][10][10][10][maxn];
bool vis[10][10][10][10][maxn];
int n;

void read()
{
    memset(sum,0,sizeof(sum));
    memset(vis,false,sizeof(vis));
    for(int i=1;i<=8;i++)
    {
        for(int j=1;j<=8;j++)
        {
            scanf("%d",&map[i][j]);
        }
    }
    for(int i=1;i<=8;i++)
    {
        for(int j=1;j<=8;j++)
        {
            sum[i][j] = sum[i-1][j] + sum[i][j-1]- sum[i-1][j-1] + map[i][j];
        }
    }
    return;
}

int dfs(int x1,int x2,int y1,int y2,int num)
{
    if(num == 1)
    {
        vis[x1][x2][y1][y2][num] = true;
        int tmp = sum[x2][y2] - sum[x2][y1-1] - sum[x1-1][y2] + sum[x1-1][y1-1];
        return dp[x1][x2][y1][y2][num] = tmp * tmp;
    }
    if(vis[x1][x2][y1][y2][num])
    {
        return dp[x1][x2][y1][y2][num];
    }
    int res = inf;
    for(int i=x1;i<x2;i++)
    {
        res = MIN(res , dfs(x1,i,y1,y2,num-1) + dfs(i+1,x2,y1,y2,1));
        res = MIN(res , dfs(x1,i,y1,y2,1) + dfs(i+1,x2,y1,y2,num-1));
    }
    for(int i=y1;i<y2;i++)
    {
        res = MIN(res , dfs(x1,x2,y1,i,num-1) + dfs(x1,x2,i+1,y2,1));
        res = MIN(res , dfs(x1,x2,y1,i,1) + dfs(x1,x2,i+1,y2,num-1));
    }
    vis[x1][x2][y1][y2][num] = true;
    return dp[x1][x2][y1][y2][num] = res;
}

void solve()
{
    int tot = dfs(1,8,1,8,n);
    double ave = sum[8][8] / (n * 1.0);
    double ans = tot * 1.0 / n - ave * ave;
    printf("%.3f\n",sqrt(ans));
    return;
}

int main()
{
    while(~scanf("%d",&n))
    {
        read();
        solve();
    }
    return 0;
}


你可能感兴趣的:(POJ 1191 棋盘分割 简单记忆化dfs)