hdu 4606 Occupy Cities(几何+二分+KM)

题目链接:hdu 4606 Occupy Cities

解题思路

首先预处理出两两点之间的最短距离,然后二分背包容量,用KM判断是否可行。

预处理部分,将所有线段的端点加入考虑,枚举两点之间直线,如果与线段相交则不可以移动。然后用floyd处理出点点之间的最短距离。

判断部分,因为有P个士兵,所以对于一个距离,可以根据占领顺序处理出有向边,然后用KM处理至少需要多少个士兵。

代码

#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>

using namespace std;
const int maxn = 305;
const double inf = 1e20;
const double eps = 1e-8;

struct Point {
    double x, y;
    Point(double x = 0, double y = 0): x(x), y(y) {}
    void read() { scanf("%lf%lf", &x, &y); }
    Point operator - (const Point& u) { return Point(x - u.x, y - u.y); }
}L[maxn], R[maxn];

int N, M, S, T, A[maxn];
vector<Point> P;
double D[maxn][maxn];

double getCross(Point a, Point b) { return a.x * b.y - a.y * b.x; }
double distant(double x, double y) { return sqrt(x*x+y*y); }
int dcmp(double x) { if (fabs(x) < eps) return 0; return x < 0 ? -1 : 1; }

bool haveIntersection(Point a1, Point a2, Point b1, Point b2) {
    double c1 = getCross(a2-a1, b1-a1), c2 = getCross(a2-a1, b2-a1);
    double c3 = getCross(b2-b1, a1-b1), c4 = getCross(b2-b1, a2-b1);
    return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}

bool judge (Point l, Point r) {
    for (int i = 0; i < M; i++) {
        if (haveIntersection(l, r, L[i], R[i])) return false;
    }
    return true;
}

void init () {
    P.clear();
    scanf("%d%d%d", &N, &M, &S);

    double x, y;
    for (int i = 0; i < N; i++) {
        scanf("%lf%lf", &x, &y);
        P.push_back(Point(x, y));
    }

    for (int i = 0; i < M; i++) {
        L[i].read(), R[i].read();
        P.push_back(L[i]);
        P.push_back(R[i]);
    }
    for (int i = 0; i < N; i++) { scanf("%d", &A[i]); A[i]--; } 

    T = P.size();
    for (int i = 0; i < T; i++) {
        D[i][i] = 0;
        for (int j = i + 1; j < T; j++) {
            if (judge(P[i], P[j]))
                D[i][j] = D[j][i] = distant(P[i].x - P[j].x, P[i].y - P[j].y);
            else
                D[i][j] = D[j][i] = inf;
        }
    }

    for (int k = 0; k < T; k++) {
        for (int i = 0; i < T; i++) {
            for (int j = 0; j < T; j++)
                D[i][j] = min(D[i][j], D[i][k] + D[k][j]);
        }
    }
}

/***************************/
int l[maxn];
bool t[maxn], vis[maxn][maxn];
vector<int> G[maxn];

bool match(int u) {
    for (int i = 0; i < G[u].size(); i++) {
        int j = G[u][i];
        if (!t[j]) {
            t[j] = true;
            if (!l[j] || match(l[j])) {
                l[j] = u;
                return true;
            }
        }
    }
    return false;
}

int KM () {
    int ret = 0;
    memset(l, 0, sizeof(l));

    for (int i = 1; i <= N; i++) {
        memset(t, false, sizeof(t));
        if (match(i)) ret++;
    }
    return ret;
}

int get(double len) {
    memset(vis, false, sizeof(vis));
    for (int i = 0; i < N; i++) {
        for (int j = i + 1; j < N; j++)
            if (dcmp(D[A[i]][A[j]] - len) <= 0)
                vis[A[i]+1][A[j]+1] = true;
    }

    for (int k = 1; k <= N; k++) {
        for (int i = 1; i <= N; i++)
            for (int j = 1; j <= N; j++)
                if (vis[i][k] && vis[k][j])
                    vis[i][j] = true;
    }

    for (int i = 1; i <= N; i++) {
        G[i].clear();
        for (int j = 1; j <= N; j++) if (vis[i][j])
            G[i].push_back(j);
    }
    return N - KM();
}

/**************************/

double solve () {
    double l = 0, r = 0;
    for (int i = 0; i < N; i++)
        for (int j = i + 1; j < N; j++) r = max(D[i][j], r);
    r += 1;

    while (r - l > 1e-3) {
        double mid = (l + r) / 2;
        if (get(mid) <= S) r = mid;
        else l = mid;
    }
    return l;
}

int main () {
    int cas;
    scanf("%d", &cas);
    while (cas--) {
        init();
        printf("%.2lf\n", solve());
    }
    return 0;
}

你可能感兴趣的:(hdu 4606 Occupy Cities(几何+二分+KM))