hdu 4248 A Famous Stone Collector【DP】【Fudan Local Programming Contest 2012 D】

题目大意:给n堆不同颜色的石头,给定每堆石子的数量,问,能够组成多少串满足:

Two patterns are considered different, if and only if they have different number of stones or have different colors on at least one position.

解题思路:开始的时候没有思路,想各种组合数学知识,最后,突发奇想,会不会是dp??对,就是dp

dp[i][j] 表示前i堆石子构成长度为j的串的方案数;

状态转移方程是:k为i堆使用的数量

dp[i][j] = (dp[i][j] + dp[i-1][j-k] * C[j][k]%M)%M;
ok问题解决,让我费了不少时间的是c[j][k](组合数)不是很好想。
code:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define M 1000000007
long long dp[110][10010];
long long C[11000][110];
void cc()
{
    int i,j;
    C[0][0]=1;
    for(i=1;i<10010;i++)
        for(j=0;j<=100;j++)
            if(j == 0) C[i][j] = C[i-1][j];
            else C[i][j] = (C[i-1][j]+C[i-1][j-1])%M;
            //C[i][j]=(j==0) ? C[i-1][j] : ();
}
int main()
{
    cc();
    int n;
    int cas = 1;
    while(cin >> n)
    {
        memset(dp,0,sizeof(dp));
        dp[0][0] = 1;
        int sum = 0;
        for(int i = 1;i <= n;i++)
        {
            int t;
            cin >> t;
            sum += t;
            for(int k = 0;k <= t;k++)
                for(int j = k;j <= sum;j++)
                    dp[i][j] = (dp[i][j] + dp[i-1][j-k] * C[j][k]%M)%M;
           
        }
        long long re = 0;
        for(int i = 1;i <= sum;i++) re = (re + dp[n][i])%M;
        cout << "Case " << cas++<< ": " << re << "\n";
    }
    return 0;
}


 
 

你可能感兴趣的:(hdu 4248 A Famous Stone Collector【DP】【Fudan Local Programming Contest 2012 D】)