本文将介绍几种常见的形变监测结果可视化方法,主要分为监测结果和误差可视化两种,监测结果又分为视线方向的监测结果和三维监测结果。
如下:
其中红三角代表参考点,黑十字代表 continuous GPS (CGPS) station。该结果由19幅Envisat SAR影像通过PSInSAR处理得到,时间跨度为: June 10, 2003 and July 8, 2008.
可以想象这里的rate是通过形变总量除以总时间跨度得到的。
如下:
其中红三角代表参考点,这里我有一个困惑:每一个形变图都是相对于参考点的,那么每一幅图里面的参考点有没有变化呢?如果有,这个序列放在这儿有什么可比性呢?可能的解释是参考点相对火山口较远,可以认为不怎么形变。
如下:
Comparison of timeseries PSInSAR measurements with CGPS observations
其中,红三角和蓝色的点分别代表CGPS和PSInSAR的结果,注意横轴表示的是时间,显然并不是所有时间两者都具有可比性。所以文中是这样分析的:
The time series are complementary and they match reasonably well where they overlap in time (i.e., mostly within one standard deviation in the CGPS measurements), which demonstrates that MTInSAR can be useful either as a stand-alone tool or in conjunction with other deformation monitoring techniques.
虽然文献里没有说,可以想象这里的CGPS测量结果是要规划到视线方向的。
Conventional InSAR techniques have demonstrated success in mapping surface displacements, but only in the radar line-of-sight (LOS) direction. Because SAR satellites occupy near-polar orbits (i.e., approximately N–S ground tracks and E–W look directions), it is impossible to measure small three-dimensional (3-D) surface displacements from LOS InSAR data alone, even when multiple independent interferograms with different viewing angles are used jointly.
However, when surface displacement magnitudes are on the order of meters, as is sometimes the case for large earthquakes, for example, it is possible to reconstruct the 3-D displacement field:
如下:
3-D displacement maps from MAI and LOS InSAR measurements
其中:
Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1-13.
Zhong, L., & Dzurisin, D. (2014). Insar imaging of aleutian volcanoes. Springer Praxis Books, 2014(8), 1778–1786.
Ketelaar, V. (2009). Satellite radar interferometry : subsidence monitoring techniques.