Hive通用型自定义聚合函数(UDAF)

在使用hive进行数据处理时,经常会用到group by语法,但对分组的合并操作,hive没有mysql支持得好:

group_concat([DISTINCT] 要连接的字段 [Order BY ASC/DESC 排序字段] [Separator '分隔符'])

hive只有一个collect_set内置函数,返回去重后的元素数组, 但我们可以通过编写UDAF,来实现想要的功能。
编写通用型UDAF需要两个类:解析器和计算器。解析器负责UDAF的参数检查,操作符的重载以及对于给定的一组参数类型来查找正确的计算器,建议继承AbstractGenericUDAFResolver类,具体实现如下:
  @Override
    public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters)
            throws SemanticException {
        if (parameters.length != 1) {
            throw new UDFArgumentTypeException(parameters.length - 1, "Exactly one argument is expected.");
        }
        if (parameters[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
            throw new UDFArgumentTypeException(0, "Only primitive type arguments are accepted.");
        }
        return new CollectListUDAFEvaluator();
    }
计算器实现具体的计算逻辑,需要继承GenericUDAFEvaluator抽象类。
计算器有4种模式,由枚举类GenericUDAFEvaluator.Mode定义:
    public static enum Mode {
        PARTIAL1, //从原始数据到部分聚合数据的过程(map阶段),将调用iterate()和terminatePartial()方法。
        PARTIAL2, //从部分聚合数据到部分聚合数据的过程(map端的combiner阶段),将调用merge() 和terminatePartial()方法。	
        FINAL,    //从部分聚合数据到全部聚合的过程(reduce阶段),将调用merge()和 terminate()方法。
        COMPLETE  //从原始数据直接到全部聚合的过程(表示只有map,没有reduce,map端直接出结果),将调用merge() 和 terminate()方法。
    };

计算器必须实现的方法:
1、getNewAggregationBuffer():返回存储临时聚合结果的AggregationBuffer对象。
2、reset(AggregationBuffer agg):重置聚合结果对象,以支持mapper和reducer的重用。
3、iterate(AggregationBuffer agg,Object[] parameters):迭代处理原始数据parameters并保存到agg中。
4、terminatePartial(AggregationBuffer agg):以持久化的方式返回agg表示的部分聚合结果,这里的持久化意味着返回值只能Java基础类型、数组、基础类型包装器、Hadoop的Writables、Lists和Maps。
5、merge(AggregationBuffer agg,Object partial):合并由partial表示的部分聚合结果到agg中。
6、terminate(AggregationBuffer agg):返回最终结果。
 
通常还需要覆盖初始化方法ObjectInspector init(Mode m,ObjectInspector[] parameters),需要注意的是,在不同的模式下parameters的含义是不同的,比如m为 PARTIAL1 和 COMPLETE 时,parameters为原始数据;m为 PARTIAL2 和 FINAL 时,parameters仅为部分聚合数据(只有一个元素)。在 PARTIAL1 和 PARTIAL2 模式下,ObjectInspector  用于terminatePartial方法的返回值,在FINAL和COMPLETE模式下ObjectInspector 用于terminate方法的返回值。
下面实现一个计算器,按分组中元素的出现次数降序排序,并将每个元素的在分组中的出现次数也一起返回,格式为:
 [data1, num1, data2, num2, ...]
  public static class CollectListUDAFEvaluator extends GenericUDAFEvaluator {
        protected PrimitiveObjectInspector inputKeyOI;
        protected StandardListObjectInspector loi;
        protected StandardListObjectInspector internalMergeOI;
        @Override
        public ObjectInspector init(Mode m, ObjectInspector[] parameters)
                throws HiveException {
            super.init(m, parameters);
            if (m == Mode.PARTIAL1) {
                inputKeyOI = (PrimitiveObjectInspector) parameters[0];
                return ObjectInspectorFactory.getStandardListObjectInspector(
                        ObjectInspectorUtils.getStandardObjectInspector(inputKeyOI));
            } else {
                if ( parameters[0] instanceof StandardListObjectInspector ) {
                    internalMergeOI = (StandardListObjectInspector) parameters[0];
                    inputKeyOI = (PrimitiveObjectInspector) internalMergeOI.getListElementObjectInspector();
                    loi = (StandardListObjectInspector) ObjectInspectorUtils.getStandardObjectInspector(internalMergeOI);
                    return loi;
                } else {
                    inputKeyOI = (PrimitiveObjectInspector) parameters[0];
                    return ObjectInspectorFactory.getStandardListObjectInspector(
                            ObjectInspectorUtils.getStandardObjectInspector(inputKeyOI));
                }
            }
        }

        static class MkListAggregationBuffer implements AggregationBuffer {
            List<Object> container = Lists.newArrayList();
        }
        @Override
        public void reset(AggregationBuffer agg) throws HiveException {
            ((MkListAggregationBuffer) agg).container.clear();
        }
        @Override
        public AggregationBuffer getNewAggregationBuffer() throws HiveException {
            MkListAggregationBuffer ret = new MkListAggregationBuffer();
            return ret;
        }
        @Override
        public void iterate(AggregationBuffer agg, Object[] parameters)
                throws HiveException {
            if(parameters == null || parameters.length != 1){
                return;
            }
            Object key = parameters[0];
            if (key != null) {
                MkListAggregationBuffer myagg = (MkListAggregationBuffer) agg;
                putIntoList(key, myagg.container);
            }
        }

        private void putIntoList(Object key, List<Object> container) {
            Object pCopy = ObjectInspectorUtils.copyToStandardObject(key,  this.inputKeyOI);
            container.add(pCopy);
        }

        @Override
        public Object terminatePartial(AggregationBuffer agg)
                throws HiveException {
            MkListAggregationBuffer myagg = (MkListAggregationBuffer) agg;
            List<Object> ret = Lists.newArrayList(myagg.container);
            return ret;
        }
        @Override
        public void merge(AggregationBuffer agg, Object partial)
                throws HiveException {
            if(partial == null){
                return;
            }
            MkListAggregationBuffer myagg = (MkListAggregationBuffer) agg;
            List<Object> partialResult = (List<Object>) internalMergeOI.getList(partial);
            for (Object ob: partialResult) {
                putIntoList(ob, myagg.container);
            }
            return;
        }

        @Override
        public Object terminate(AggregationBuffer agg) throws HiveException {
            MkListAggregationBuffer myagg = (MkListAggregationBuffer) agg;
            Map<Text, Integer> map = Maps.newHashMap();
            for (int i = 0; i< myagg.container.size() ; i++){
                Text key = (Text) myagg.container.get(i);
                if (map.containsKey(key)) {
                    map.put(key, map.get(key) + 1);
                }else{
                    map.put(key, 1);
                }
            }
            List<Map.Entry<Text, Integer>> listData = Lists.newArrayList(map.entrySet());
            Collections.sort(listData, new Comparator<Map.Entry<Text, Integer>>() {
                public int compare(Map.Entry<Text, Integer> o1, Map.Entry<Text, Integer> o2) {
                    if (o1.getValue() < o2.getValue())
                        return 1;
                    else if (o1.getValue() == o2.getValue())
                        return 0;
                    else
                        return -1;
                }
            });

            List<Object> ret =  Lists.newArrayList();
            for(Map.Entry<Text, Integer> entry : listData){
                ret.add(entry.getKey());
                ret.add(new Text(entry.getValue().toString()));
            }
            return ret;
        }
    }

使用方法:
add jar /export/data/hiveUDF.jar;
create temporary function collect_list  as 'com.test.hive.udf.CollectListUDAF';
select id, collect_list(value) from test group by id;

test表中数据为:
+------+-------+
| id   | value |
+------+-------+
|    1 | a     |
|    1 | a     |
|    1 | b     |
|    2 | c     |
|    2 | d     |
|    2 | d     |
+------+-------+

运行结果为:
1    ["a", "2", "b", "1"]
2    ["d", "2", "c", "1"]  

附:用Map实现的话会比较简单,但在数据量大的时候,统计的数据有些会不准确(在只有一个map/reduce时,统计无误),最后我也没有找到好的解决办法,所以这里用的ArrayList。



你可能感兴趣的:(Hive通用型自定义聚合函数(UDAF))