Bayesian Classifier (Naive Bayesian Classifier - 朴素贝叶斯分类)

Bayes Rule
Bayesian Classifier (Naive Bayesian Classifier - 朴素贝叶斯分类)_第1张图片

Maximum a posteriori (MAP) hypothesis
Bayesian Classifier (Naive Bayesian Classifier - 朴素贝叶斯分类)_第2张图片

Note P(x) is independent of h, hence can be ignored.


Assuming that each hypothesis in H is equally probable, i.e., P(hi) = P(hj), for all i and j, then we can drop P(h) in MAP. P(d|h) is often called the likelihood of data d given h. Any hypothesis that maximizes P(d|h) is called the maximum likelihood hypothesis
(如果类的先验概率未知那我们就假设对于任意的i,j ; P(hi) = P(hj),此时我们可以不考虑 P(h),则目标函数化简如下:)

The Bayesian approach to classifying a new instance X is to assign it to the most probable target value Y (MAP classifier)
(d为类别标示,x1,...x4为样本的各个维度的值)
Bayesian Classifier (Naive Bayesian Classifier - 朴素贝叶斯分类)_第3张图片
(如果属性值之间不是相互独立的,那么我们不仅需要大量计算还需要一个巨大的训练样本集合,朴素贝叶斯假设样本的各个属性之间是相互独立的)
Naive Bayesian Classifier is based on the simplifying assumption that the attribute values are conditionally independent given the target value.

This means, we have



(朴素贝叶斯的目标函数)
Bayesian Classifier (Naive Bayesian Classifier - 朴素贝叶斯分类)_第4张图片
e.g
Bayesian Classifier (Naive Bayesian Classifier - 朴素贝叶斯分类)_第5张图片

Bayesian Classifier (Naive Bayesian Classifier - 朴素贝叶斯分类)_第6张图片






你可能感兴趣的:(机器学习,模式识别)