思路:在一个三维坐标中,给出n个长方体,求所有长方体相交体积,每个长方体给定的是左下角和右上角的坐标。
所有相交体积必然属于两两相交的,而且随着长方体的增多,这个公共体积不会增加,所以呢,这个公共体积的左下角的xyz坐标必然是所有中最大的,而右上角的坐标必然是最小的。最后判断这个公共部分是否合理及是否可以组成一个长方体。
// #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <algorithm> #include <iomanip> #include <sstream> #include <string> #include <stack> #include <queue> #include <deque> #include <vector> #include <map> #include <set> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <climits> using namespace std; // #define DEBUG #ifdef DEBUG #define debug(...) printf( __VA_ARGS__ ) #else #define debug(...) #endif #define CLR(x) memset(x, 0,sizeof x) #define MEM(x,y) memset(x, y,sizeof x) #define pk push_back template<class T> inline T Get_Max(const T&a,const T&b){return a < b?b:a;} template<class T> inline T Get_Min(const T&a,const T&b){return a < b?a:b;} typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> ii; const double eps = 1e-10; const int inf = 1 << 30; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; struct Point{ double x, y; Point(){} Point(double _x, double _y){ x = _x; y = _y; } Point operator + (const Point& rhs)const{ return Point(x + rhs.x, y + rhs.y); } Point operator - (const Point& rhs)const{ return Point(x - rhs.x, y - rhs.y); } double operator ^ (const Point& rhs)const{ return (x * rhs.y - y * rhs.x); } double operator * (const Point& rhs)const{ return (x * rhs.x + y * rhs.y); } Point operator * (const double Num)const{ return Point(x * Num,y * Num); } friend ostream& operator << (ostream& output,const Point& rhs){ output << "(" << rhs.x << "," << rhs.y << ")"; return output; } }; typedef Point Vector; /*向量的模*/ inline double Length(const Vector& A){//Get the length of vector A; return sqrt(A * A);//sqrt(x*x+y*y); } /*向量夹角*/ inline double Angle(const Vector& A,const Point& B){ return acos(A * B/Length(A)/Length(B)); } /*向量A旋转rad弧度*/ inline Point Rotate(const Vector& A, double rad){ return Vector(A.x*cos(rad) - A.y*sin(rad),A.x*sin(rad) + A.y*cos(rad)); } int a[7]; int main() { // ios::sync_with_stdio(false); // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int t, icase = 0; int n; cin >> t; while(t--){ a[1] = a[2] = a[3] = 0; a[4] = a[5] = a[6] = inf; cin >> n; int tmp; while(n--){ for (int i = 1;i <= 3;++i){ cin >> tmp; if (tmp > a[i]) a[i] = tmp; } for (int i = 4;i <= 6;++i){ cin >> tmp; if (a[i] > tmp) a[i] = tmp; } } if (a[4] > a[1] && a[5] > a[2] && a[6] > a[3]){ printf("Case %d: %d\n", ++icase, (a[4] - a[1])*(a[5] - a[2])*(a[6] - a[3])); } else printf("Case %d: 0\n", ++icase); } return 0; }