Java 大数之卡特兰数 HDU1130统计二叉树的数量

令h(0)=1,h(1)=1,catalan数满足递推式[1] :
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + … + h(n-1)h(0) (n>=2)

例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2
h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5

递推关系的解为:
h(n)=C(2n,n)/(n+1) (n=0,1,2,…)
递推关系的另类解为:
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,…)

前20项为(OEIS中的数列A000108):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190

catalan数满足递归式: h(n)=(4*n-2)/(n+1)*h(n-1)

import java.math.BigInteger;
import java.util.Scanner;
public class Main
{
    public static void main(String []args)
    {
        Scanner cin=new Scanner(System.in);
        BigInteger h[]=new BigInteger[1005];
        h[0]=new BigInteger("1");
        h[1]=new BigInteger("1");
        BigInteger one=new BigInteger("1");
        BigInteger four=new BigInteger("4");
        BigInteger two=new BigInteger("2");
        for(int i=2;i<1005;i++)
        {
            String str=String.valueOf(i);
            BigInteger n=new BigInteger(str);
            BigInteger temp=new BigInteger("0");
            h[i]=(n.multiply(four).subtract(two)).multiply(h[i-1]).divide(n.add(one));
            //h[i]=temp.divide(n.add(one));
            //h[i]=h[i-1].multiply(4*n-1).divide(n.add()); 
        }
        while(cin.hasNext())
        {
            //令h(1)=1,h(0)=1,catalan数满足递归式: 
            //h(n)=(4*n-2)/(n+1)*h(n-1); 
            int n=cin.nextInt();
            System.out.println(h[n]);
        }
    }
}

仅代表个人观点,欢迎交流探讨,勿喷~~~

Java 大数之卡特兰数 HDU1130统计二叉树的数量_第1张图片

PhotoBy:WLOP

http://weibo.com/wlop

你可能感兴趣的:(java)