题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3609
题面:
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
. This is equivalent to ax≡1 (mod m)
.
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
3 3 11 4 12 5 13
4 Not Exist 8
解题:
乍一看,应该是中国剩余定理,还是什么线性同余方程,不过当初学这块没学好,仔细一看可以水过,等复习后,再来补充其他解法。
思路:
因为(a*x)%m==1%m,可以写作(a*(x'+n*m))%m==1%m,当x的值超过m时,其实已经重复了,而m的范围在0到1000,所以直接暴就好了。
比较坑的是,写的时候,直接就把右边写作1了,没考虑到m=1的情况。因此,细节还是相当重要的,提交前,需要仔细检查一下边界数据。
代码:
#include <iostream> #include <algorithm> #include <string> #include <iomanip> #include <cstdio> #include <cstring> using namespace std; int main() { int t,a,m,x; bool flag; scanf("%d",&t); while(t--) { scanf("%d%d",&a,&m); if(m==1) { printf("1\n"); continue; } flag=false; for(int i=1;i<=m;i++) { if((a*i)%m==1) { flag=true; printf("%d\n",i); break; } } if(!flag)printf("Not Exist\n"); } return 0; }