基于hadoop的排序实现以及在hadoop中使用反射会碰到的问题

hadoop的排序功能是非常强大的,据说对1T的数据进行排序只用了一分多钟,我们这片文章的主要目的是介绍如何利用hadoop强大的排序功能来对我们的数据进行排序。在设计一个通用的排序算法的时候我用到了java的反射功能,但是在hadoop中使用反射功能可能会遇到一些麻烦,这些我会在后面提到。

     首先hadoop的排序过程是发生在map过程后(如果有combine过程那么是发生在combine过程后的)的shuffle过程的,在这个过程中hadoop系统对map过程产生的键值对的key进行排序,然后发送到各个reducer上去。这篇文章的目的不是剖析hadoop的实现原理的,而是告诉大家怎么利用hadoop来对自己的数据进行排序,废话少说我们下面进入正题。


1 hadoop的内置数据

hadoop为我们提供了很多可作为key的数据类型,比如IntWritable,DoubleWritable,TextWritable等等,如果我们在map端发送的key是基本类型,那么我们直接使用这些内置数据类型即可。


2 使用自己编写的数据类型

但是内置数据类型毕竟有限,在处理比较复杂的问题的时候,我们就得自己来编写我们的key类型了。其实这很简单,只要该类实现接口WritableComparable接口,那么该类的对象就可以被hadoop当做key来处理。下面举一个小例子:
package toolbox.algorithms.neuralnetwork;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;


public class IntPairs implements WritableComparable<IntPairs>{

	int number1;
	int number2;
	List<String> list=null;
	
	/**
	 * 这里必须要提供一个不带参数的构造方法,因为hadoop是用发射来构造该类,如果没有该构造方法,系统会报错
	 */
	public IntPairs(){
		
	}
	
	
	/**
	 * 如何从sequeceFile中还原数据
	 */
	@Override
	public void readFields(DataInput in) throws IOException {
		number1 = in.readInt();
		number2 = in.readInt();
		
		int listLen = in.readInt();			//读取链表的长度
		list = new ArrayList<String>();		//如果在构造函数中没有初始化该变量,使用前必须先初始化,基础类型不需要初始化
		
		for(int i=0;i<listLen;i++)
		{
			Text text = new Text();
			text.readFields(in);
			//这个地方不要使用 in.readline()方法,该方法会引入一些奇怪的字符,我也不知道为什么
			
			list.add(text.toString());
		}
	}

	
	/**
	 * 怎么向sequenceFile中写入数据
	 */
	@Override
	public void write(DataOutput out) throws IOException {
		new IntWritable(number1).write(out);
		new IntWritable(number1).write(out);
		
		//写入链表的长度,很重要
		new IntWritable(list.size()).write(out);
		
		for(int i=0;i<list.size();i++)
			new Text(list.get(i)).write(out);
	}

	
	/**
	 * key之间怎么做比较
	 */
	@Override
	public int compareTo(IntPairs o) {
		return (number1==o.number1)?(number2-o.number2):(number1-o.number1);
	}

}

3 通用的排序算法

时间关系,我不可能一行行的来解释,直接上代码,代码很简单,稍有java基础的人都能看得懂:
sort/SortDriver.java
package toolbox.algorithms.sort;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.mahout.common.HadoopUtil;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class SortDriver {
	
	  private static final Logger log = LoggerFactory.getLogger(SortDriver.class);
	
	
	
	
	/**
	 * args[0] is the 
	 * args[1] is inputPath
	 * args[2] is outputPath
	 * args[3] is whether to sort in desc order
	 * args[4] is the data type
	 * @param args
	 * @throws ClassNotFoundException 
	 * @throws InterruptedException 
	 * @throws IOException 
	 */
	public static void main(String[] args) 
			throws ClassNotFoundException, IOException, InterruptedException{
		if(args.length<3){
			System.out.println("arguments error!");
			System.exit(-1);
		}
		
		if(args.length==3)
			run(args[1],args[2],true,"String");
		else if(args.length==4)
			run(args[1],args[2],Boolean.parseBoolean(args[3]),"String");
		else 
			run(args[1],args[2],Boolean.parseBoolean(args[3]),args[4]);
			
	}
	
	@SuppressWarnings("unchecked")
	public static void run(String inputPath,String outputPath,boolean desc,String type)
			throws ClassNotFoundException, IOException, InterruptedException{

		Class<?extends WritableComparable> outputType;
		
		
		if(type.equals("int"))
			outputType = (Class<? extends WritableComparable<Integer>>)Class.forName("toolbox.common.IntWritableParser");
		else if(type.equals("String"))
			outputType = (Class<? extends WritableComparable<Integer>>)Class.forName("toolbox.common.TextWritableParser");
		else{
			log.info("use user-defined output data type!");
			outputType = (Class<? extends WritableComparable<Integer>>)Class.forName(type);
		}
		run(new Path(inputPath),new Path(outputPath),desc,outputType);
		
		
		
//		if(type.equals("int")) dataType=IntWritable.class;
//		else if(type.equals("double")) dataType=DoubleWritable.class;
//		else if(type.equals("String")) dataType=Text.class;
//		else dataType=Class.forName(type);
	}
	
	public static void run(Path inputPath,Path outputPath,boolean desc,Class<?extends WritableComparable> outType)
			throws IOException, ClassNotFoundException, InterruptedException{
		

		
		Configuration conf = new Configuration();
		
//		HadoopUtil.delete(conf, outputPath);
		conf.set("toolbox.algorithms.sort.writable_type",outType.getName());

		Job job = new Job(conf, "word count");
	    job.setJarByClass(SortDriver.class);
	    
	    job.setMapperClass(SortMapper.class);
	    job.setCombinerClass(SortReducer.class);
	    job.setReducerClass(SortReducer.class);
	    	    
	    job.setOutputKeyClass(outType);
	    job.setOutputValueClass(IntWritable.class);
	    
	    FileInputFormat.addInputPath(job, inputPath);
	    FileOutputFormat.setOutputPath(job, outputPath);
	    
	    System.exit(job.waitForCompletion(true) ? 0 : 1);
	}
}

sort/SortMapper.java:
package toolbox.algorithms.sort;

import java.io.IOException;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapreduce.Mapper;

public class SortMapper extends Mapper<Object,Text,WritableComparable<?>,IntWritable>{
    
	protected static IntWritable ONE = new IntWritable(1);
	
	protected static Class<?extends WritableComparable> writable_type;
	protected static Constructor<?> construct_method;
	protected static Method parse_method;
	
	@SuppressWarnings("unchecked")
	@Override
	public void setup(Context context){
		Configuration conf = context.getConfiguration();
		try {			
			writable_type = (Class<? extends WritableComparable>) Class.forName(conf.get("toolbox.algorithms.sort.writable_type"));			
			parse_method = writable_type.getDeclaredMethod("parse");
			construct_method = writable_type.getConstructor(writable_type);			
		} catch (ClassNotFoundException e) {
			e.printStackTrace();
		} catch (NoSuchMethodException e) {
			e.printStackTrace();
		} catch (SecurityException e) {
			e.printStackTrace();
		}
	}
	
	
	@Override
	public void map(Object key, Text value, Context context
            ) throws IOException, InterruptedException {        
        StringTokenizer stk =new StringTokenizer(value.toString()); 
        
        while(stk.hasMoreElements()){
        	String elment = stk.nextToken();
        		Object e;
				try {
					e = construct_method.newInstance(parse_method.invoke(writable_type, elment));
	            	context.write((WritableComparable<?>)e, ONE);
				} catch (IllegalArgumentException e1) {
					// TODO Auto-generated catch block
					e1.printStackTrace();
				} catch (InstantiationException e1) {
					// TODO Auto-generated catch block
					e1.printStackTrace();
				} catch (IllegalAccessException e1) {
					// TODO Auto-generated catch block
					e1.printStackTrace();
				} catch (InvocationTargetException e1) {
					// TODO Auto-generated catch block
					e1.printStackTrace();
				}            	
        }
    }
}

sort/SortReducer.java:
package toolbox.algorithms.sort;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapreduce.Reducer;

public class SortReducer
	extends Reducer<WritableComparable<?>,IntWritable,WritableComparable<?>,IntWritable> {
   
	@Override
	public void reduce(WritableComparable<?> key, Iterable<IntWritable> values, Context context)
			throws IOException, InterruptedException {
		int sum=0;
		for(IntWritable value:values)
    		sum += value.get();
		context.write(key, new IntWritable(sum));
    }
}

4 基本类型的解析器以及包装类型的结构

从Driver中我们可以看到这里利用了反射功能从文本中的字符串构造对应类型的对象,其实这是一件很麻烦的事情,因为我们需要针对每一种类型都有各自的解析函数,该解析函数放在哪里就是个问题,如果为每个类型单独编写一个只包含该解析函数的类会使程序显得臃肿和混乱,而且该函数必须是一个静态函数,经过反复斟酌,我设计一下这个比较笨的方法,还是直接上代码:
common/IntWritableParser.java:
package toolbox.common;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.WritableComparable;

public class IntWritableParser implements WritableComparable<Integer>{
	
	int oValue;
	IntWritable pValue = null;

	
	public IntWritableParser(int v){
		oValue = v;
		pValue = new IntWritable(v);
	}
	
	public IntWritableParser(IntWritableParser v){
		oValue = v.getoValue();
		pValue = v.getpValue();
	}
	
	
	public static IntWritable parse(String arg) {
		return new IntWritable(Integer.parseInt(arg));
	}

	@Override
	public void write(DataOutput out) throws IOException {
		pValue.write(out);
	}

	@Override
	public void readFields(DataInput in) throws IOException {
		pValue.readFields(in);
	}

	@Override
	public int compareTo(Integer o) {
		return pValue.compareTo(o);
	}

	public IntWritable getpValue() {
		return pValue;
	}

	public void setpValue(IntWritable pValue) {
		this.pValue = pValue;
	}

	public int getoValue() {
		return oValue;
	}

	public void setoValue(int oValue) {
		this.oValue = oValue;
	}
}

common/TextWritable.java:
package toolbox.common;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;

public class TextWritableParser implements WritableComparable<String>{

	String oValue;
	Text pValue;
	
	public TextWritableParser(String value){
		oValue = value;
		pValue = new Text(value);
	}
	
	public TextWritableParser(TextWritableParser value){
		oValue = value.getoValue();
		pValue = value.getpValue();
	}
	
	
	@Override
	public void write(DataOutput out) throws IOException {
		pValue.write(out);
	}

	@Override
	public void readFields(DataInput in) throws IOException {
		pValue.readFields(in);
	}

	@Override
	public int compareTo(String o) {
		return oValue.compareTo(o);
	}

	public static String parse(String arg) {
		return arg;
	}



	public String getoValue() {
		return oValue;
	}



	public void setoValue(String oValue) {
		this.oValue = oValue;
	}



	public Text getpValue() {
		return pValue;
	}



	public void setpValue(Text pValue) {
		this.pValue = pValue;
	}

}

我觉这样设计是最省事和方便的,这种类型既可以当做key来使用,又提供了parse(String)函数来将一个字符串解析成该类的对象,当然,用户如果想使用自己的类型来完成排序,那么他所提供的key的类首先应该实现WritableComparable接口,其次他必须在该类中定义一个静态方法名为parse(String),否则该程序会报方法无法找到的错误。

5在hadoop中使用反射

在hadoop程序中使用反射,可能会遇到系统报找不到该类的class文件这个错误,具体的原因我也不知道为什么,我只知道解决方法,如果你要在你的程序中使用反射,那么必须把加载的类文件或者jar包放到你所在机器的$Hadoop_HOME/lib文件夹下,这样hadoop系统才能找到该类。

你可能感兴趣的:(hadoop,object,String,Integer,Class,Path)