问题定义:
问题定义比较复杂,建议看《算法导论》里的线性规划一章。单纯型算法用于求解如下这类问题:
例:
求等式的最小值: -2X1– 3X2
且自变量满足如下约束:
X1 + X2 = 7
X1 – 2X2 <= 4
X1 >= 0
将约束等式转换为标准型:
标准型的条件:
1. 求目标函数的最大值
2. 每个自变量都大于等于零(非负约束)
3.约束不等式,只有最小化约束
max 2X1 – 3X2 + 3X3
并且满足:
X1 + X2- X3 <= 7
-X1 – X2+ X3 <= -7
X1 – 2X2+ 2X3 <= 4
X1, X2, X3 >= 0
将标准型转换成松弛型:
z = 2X1– 3X2 + 3X3
X4 = 7- X1 - X2 + X3
X5 = -7+ X1 + X2 - X3
X6 = 4- X1 + 2X2 - 2X3
则基本变量为的下标集合 B = {4, 5, 6}
非基本变量的下标集合 N = {1, 2, 3}
C = [ 2 3 3 ]T
b = [ 7 -7 4 ]T
A |
1 |
1 |
-1 |
-1 |
-1 |
1 |
|
1 |
-2 |
2 |
v = 0
具体实现时,将 A, b, C, v都存储在一个数组中
data |
0v |
2c |
-3c |
3c |
7b |
1A |
1A |
-1A |
|
-7b |
-1A |
-1A |
1A |
|
4b |
1A |
-2A |
2A |
代码如下:
/* *Copyright(c) Computer Science Department of XiaMen University * *Authored by laimingxing on: 2012年 03月 03日 星期六 00:14:35 CST * * @desc: * * @history */ #include <iostream> #include<algorithm> #include <vector> #include <string.h> using namespace std; const double unbounded = 10000000; const int MAX = 10; int n; double data[MAX][MAX];//A,b,c,v都存储在data里面 void PIVOT( vector<int> &N, vector<int> &B, int l ,int e); void simple( vector<int> &N, vector<int>&B); int main(int argc, char* argv[]) { //将标准行转换为松弛型 //未知数个数 const int nX = 3; //不等式个数 ,第一行为目标函数 const int nEquation = 4; int i = 0, j = 0, k = 0; vector<int>B,N; double arr[ nEquation + 1 ][nX + 1 ] = { { 2, -3, 3,0},{1, 1, -1, 7}, {-1, -1, 1, -7}, {1, -2, 2, 4} }; //N for( k = 1; k <= nX; k++) N.push_back( k); //B for( ; k < nX + nEquation; k++) B.push_back( k); n = nX + nEquation ; memset( data, 0, sizeof(int) * n * n); //c for( i = 1; i < n; i++) if( i <= nX) data[0][i] = arr[0][i - 1]; else data[0][i] = 0; //A for( i = nX + 1; i < n; i++) { for( j = 1; j <= nX ; j++) { data[i][j] = arr[ i - nX][j -1]; //cout << data[i][j] << "\t"; } } //b for( i = nX + 1; i < n; i++) data[i][0] = arr[ i - nX][nX]; simple( N,B); return 0; } void simple( vector<int> &N, vector<int>&B) { for( int j = 1; j <= n; j++) { if(data[0][j] <= 0) continue; double minBound = unbounded; int minIndex = 0; for( vector<int>::iterator i = B.begin(); i != B.end(); i++) { if( data[*i][j] <= 0)continue; double temp = data[*i][0] / data[*i][j]; if( temp < minBound) { minBound = temp; minIndex = *i; } } if( minBound > unbounded - 1) cout <<"Unbounded" << endl; else PIVOT( N, B, minIndex, j); } for( int i = 1 ; i <= n ; i++) if( find(B.begin(), B.end(),i) != B.end() ) cout << "x"<<i << " = " << data[i][0] << endl; else cout << "x"<<i << " = " << 0 <<endl; } //N是非基本变量,B是基本变量 void PIVOT( vector<int> &N, vector<int> &B, int l ,int e) { data[e][0] = data[l][0] / data[l][e]; vector<int>::iterator j; for( j = N.begin(); j != N.end(); j++) { if( *j == e)continue; data[e][*j] = data[l][*j] / data[l][e]; } data[e][l] = 1/ data[l][e]; for( vector<int>::iterator iter = B.begin(); iter != B.end(); iter++) { if( *iter == l) continue; data[*iter][0] -= data[*iter][e] * data[e][0]; for( vector<int>::iterator it = N.begin(); it != N.end(); it++) { if( *it == e)continue; data[*iter][*it] -= data[*iter][e] * data[e][*it]; } data[*iter][l] = -1 * data[*iter][l] * data[e][l]; } //Computer the objective function data[0][0] += data[0][e] * data[e][0]; for( j = N.begin(); j != N.end(); j++) { if( *j == e) continue; data[0][*j] -= data[0][e] * data[e][*j]; } data[0][l] = -1 * data[0][e] * data[e][l]; //Compute new sets of basic and nonbasic variables. vector<int>::iterator temp_it = find( N.begin(), N.end(), e); if( temp_it != N.end() ) N.erase( temp_it); N.push_back(l); temp_it = find( B.begin(), B.end(), l); if( temp_it != B.end() ) B.erase( temp_it); B.push_back(e); }