- 终于!有人总结了大模型学习资料!
AI产品经理
学习transformer语言模型人工智能数据库
大家好,我发现了一个大模型学习的神库,包含大量LLM教材和资料,并绘制了学习路线图。可以帮助快速掌握大模型的应用和开发技巧。前排提示,文末有大模型AGI-CSDN独家资料包哦!GitHub地址:https://github.com/mlabonne/llm-courseLLM基础知识1.机器学习之数学基石在踏足机器学习的殿堂之前,深入理解其背后的数学原理至关重要。线性代数:它如同桥梁,连接着算法与
- #基于Django实现机器学习医学指标概率预测网站
Ljugg
django机器学习python
基于Django实现机器学习医学指标概率预测网站一、引言在当今数字化医疗的大背景下,利用机器学习模型结合Web应用进行医学指标的概率预测具有重要的实际意义。本文将详细介绍一个基于Django框架构建的医学指标概率预测系统,通过结合随机森林模型,实现根据用户输入的多项医学指标预测特定事件发生的概率。二、项目结构概述项目主要由以下几个核心部分组成:模板文件(templates):负责页面的展示和用户交
- 什么是AI大模型?常见的AI大模型有哪些?
AI产品经理
人工智能机器学习深度学习自然语言处理gpt
什么是AI大模型?在人工智能领域,"AI大模型"的官方概念通常指的是具有大量参数的机器学习模型,这些模型能够捕捉和学习数据中的复杂模式。参数是模型中的变量,它们在训练过程中不断调整,以便模型能够更准确地进行预测或分类任务。AI大模型通常具有以下特点:高参数量:AI大模型含有数百万甚至数十亿的参数,这使得它们能够学习和记忆大量信息。深度学习架构:它们通常基于深度学习架构,如卷积神经网络(CNNs)用
- 《Python机器学习基础教程》第十二章计算机视觉基础12.8 深度解析:目标检测算法(R-CNN、Fast R-CNN、Faster R-CNN、YOLO和SSD)及其应用场景
精通代码大仙
机器学习python机器学习开发语言
12.8深度解析:目标检测算法(R-CNN、FastR-CNN、FasterR-CNN、YOLO和SSD)及其应用场景12.8目标检测12.8.1目标检测的基本概念12.8.2R-CNN12.8.3FastR-CNN12.8.4FasterR-CNN12.8.5YOLO12.8.6SSD12.8.7实操代码示例12.8.7.1使用R-CNN进行目标检测12.8.7.2使用FastR-CNN进行目标
- 《Python实战进阶》第38集:机器学习模型优化与调参——Grid Search 与 Hyperopt
带娃的IT创业者
Python实战进阶python机器学习开发语言
第38集:机器学习模型优化与调参——GridSearch与Hyperopt摘要在机器学习项目中,超参数的设置对模型性能至关重要。本集聚焦于如何通过网格搜索(GridSearch)和Hyperopt这两种超参数优化方法,提升模型的性能。我们将从理论入手,介绍超参数搜索的核心概念,并通过两个对比实战案例展示如何使用这两种方法优化支持向量机(SVM)和XGBoost模型。最后,我们还将探讨自动化调参工具
- 《Python实战进阶》第39集:模型部署——TensorFlow Serving 与 ONNX
带娃的IT创业者
Python实战进阶pythontensorflowneo4j
第39集:模型部署——TensorFlowServing与ONNX摘要在机器学习项目中,训练好的模型需要被部署到生产环境中才能发挥实际价值。本集聚焦于如何将模型高效地部署到生产环境,涵盖TensorFlowServing和ONNX两种主流工具的使用方法。我们将从理论入手,介绍模型部署的核心概念,并通过实战案例展示如何使用TensorFlowServing部署图像分类模型,以及如何利用ONNX实现跨
- 机器学习中使用Seaborn绘制KDE核密度估计曲线
闵少搞AI
人工智能机器学习人工智能算法
核密度估计图(KDE)核密度估计(KDE)图,一种可视化技术,提供连续变量概率密度的详细视图。在本文中,我们将使用IrisDataset和KDEPlot来可视化数据集。在机器学习中,核密度估计(KDE)不仅用于可视化数据分布,还被用作一种非参数方法来估计数据的概率密度函数。这在特征工程、异常检测、生成模型等领域中有重要应用。核密度估计在机器学习中的应用特征工程:通过KDE可以理解特征的分布情况,从
- 多层感知机(MLP)全面指南
MobiCetus
强化学习开发语言java算法c++pythoneclipsegithub
多层感知机(MLP)是一种人工神经网络,由多个神经元层组成。MLP中的神经元通常使用非线性激活函数,使得网络能够学习数据中的复杂模式。MLP在机器学习中非常重要,因为它能够学习数据中的非线性关系,使其成为分类、回归和模式识别等任务中的强大模型。神经网络基础神经网络或人工神经网络是机器学习中的基本工具,支持着许多最先进的算法和应用,广泛应用于计算机视觉、自然语言处理、机器人技术等领域。一个神经网络由
- (4)绪论三:归纳偏好
在下_诸葛
《机器学习》算法机器学习数据挖掘
通过学习得到的一个模型对应了假设空间的一个假设(这是上节假设空间的内容)归纳偏好或偏好:机器学习算法在学习过程中对某种类型假设的偏好(对于一个新西瓜来说:让一个训练好的模型来判断它为好瓜还是坏瓜?可以根据某种特征判断它为好瓜,也可以根据另外一种特征判断它为坏瓜,归纳偏好就是看哪一个特征更为重要,从而根据比例将新西瓜进行分类)如果没要偏好,说明两种特征都一样重要,这时模型对新西瓜的预测,时而判断它是
- 毕设成品 基于机器学习的乳腺癌数据分析
m0_71572237
毕业设计python毕设
文章目录0简介模型评估KNNClassifierLogisticRegressionClassifierRandomForestClassifierDecisionTreeClassifierGBDT(GradientBoostingDecisionTree)ClassifierAdaBoostBaggingSVM最后0简介今天学长向大家分享一个毕业设计项目毕业设计基于机器学习的乳腺癌数据分析项目
- 【数据可视化应用】绘制类别插值地图(附Python代码)
文宇肃然
可视化工具数据分析实战应用python机器学习sklearn
sklearn.KNeighborsClassifier()终于这篇推文将机器学习和可视化完美的结合起来,即:机器学习处理数据,数据可视化技术展现、美化数据(以后的深度学习部分也会延续这个风格,只不过比重不同而已)。首先,我们给出我们今天的数据:散点数据和四川省的地图文件,python读取操作如下:import pandas as pdimport numpy as npfrom sklearn.
- 用Python打造智能宠物:强化学习的奇妙之旅
Echo_Wish
Python笔记Python算法python宠物人工智能
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- Python 实战:手语翻译系统——从视频到文本的智能转换
Echo_Wish
Python笔记Python算法从零开始学Python人工智能python音视频开发语言
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- 精准画像(Fine-Grained Profiling)
dundunmm
数据挖掘人工智能数据挖掘人工智能深度学习画像精准画像
精准画像是一种基于大数据、人工智能和机器学习技术的个性化建模方法,通过整合多源数据,深度挖掘个体或群体的特征,从而精准刻画用户(如学生、客户、员工等)的行为模式、兴趣偏好、能力水平及发展趋势。精准画像广泛应用于教育、金融、医疗、电商、智能推荐等领域。1.精准画像的核心要素精准画像通常包括以下核心要素:(1)多源数据融合:精准画像依赖于多模态数据,如行为数据(点击、浏览、购买、学习记录)、生理数据(
- 正则化是什么?
点我头像干啥
Ai人工智能神经网络深度学习
正则化(Regularization)是机器学习中用于防止模型过拟合(Overfitting)的一种技术,通过在模型训练过程中引入额外的约束或惩罚项,降低模型的复杂度,从而提高其泛化能力(即在未见数据上的表现)。核心思想是在拟合训练数据和控制模型复杂度之间取得平衡。一、常见的正则化方法1.L1正则化(Lasso回归)在损失函数中添加模型权重(参数)的L1范数(绝对值之和)作为惩罚项。特点:会倾向于
- Windows 7 下 TensorFlow 安装入门(PyCharm 版)
架构魔术
windowstensorflowpycharm编程
Windows7下TensorFlow安装入门(PyCharm版)TensorFlow是一个流行的开源机器学习框架,广泛应用于深度学习和人工智能领域。本文将指导您在Windows7操作系统上使用PyCharm安装和配置TensorFlow。以下是详细的步骤和相应的源代码。步骤1:安装Python首先,您需要安装Python。TensorFlow支持Python3.5-3.8版本。您可以从Pytho
- 机器学习周报第39周
Ramos_zl
机器学习人工智能
一、文献阅读论文标题:ObjectDetectioninVideosbyHighQualityObjectLinking1.1摘要与静态图像中的目标检测相比,视频中的目标检测由于图像质量下降而更具挑战性。许多以前的方法都通过链接视频中的相同对象以形成管状结构,并在管状结构中聚合分类得分,从而利用时间上下文信息。这些方法首先使用静态图像检测器来检测每帧中的对象,然后根据不同帧中对象框之间的空间重叠情
- 【网络安全】AWS S3 Bucket配置错误导致敏感信息泄露
秋说
web安全aws漏洞挖掘
未经许可,不得转载。文章目录前言技术分析正文前言AWS(AmazonWebServices)是亚马逊公司提供的一个安全的云服务平台,旨在为个人、公司和政府机构提供计算能力、存储解决方案、内容交付和其他功能。作为全球领先的云服务提供商之一,AWS提供了广泛的云计算服务,包括计算、存储、数据库、机器学习、人工智能、分析和互联网应用等多个领域的服务。AmazonS3(AmazonSimpleStorag
- Data+AI下湖仓一体到底有什么价值?
大数据AI智能圈
大数据人工智能人工智能大数据数据仓库数据治理数据湖
Data+AI下湖仓一体到底有什么价值?前言什么是湖仓一体?为什么企业需要湖仓一体?湖仓一体解决的实际痛点及其价值数据孤岛问题:打破信息壁垒数据治理和质量控制的挑战实时分析与高效存储:兼得不是难题降本增效:减少架构复杂性,提升运营效率支持AI与机器学习的全面落地企业实践与收益分析某电商平台的智能推荐系统某金融机构的风险控制体系某制造企业的供应链优化湖仓一体的综合效益结语前言湖仓一体到底是什么?对不
- 2025年详细叙述:金牌老 师团 队最稳计划从分层设计到多端部署
kiuytrdfgh
时序数据库
2025年,对于许多人来说,将是一个充满期待和变革的年份。在这个时代,科技的飞速发展不仅改变了我们的生活方式,也推动了社会的各个领域向前发展。让我们一起展望一下2025年的种种可能。首先,在科技方面,人工智能和机器学习将会更加普及。2025年,几乎每一个行业都将拥有自己的智能助手,从医疗到教育,从金融到制造业,人工智能将以更精准的方式帮助人类解决复杂的问题。人们的工作效率将大幅提升,创造出更多的财
- 2025年详细叙述:金牌老 师玩 发精准回 血从分层设计到多端部署
kajhgfdfgh
时序数据库
###2025年的展望:塑造未来的关键一年随着时间的推移,我们即将步入2025年,这一年被广泛认为是科技、环境和社会变革的重要转折点。从人工智能的迅猛发展到可持续发展的普及,2025年无疑将对我们的生活方式产生深远影响。首先,科技将在2025年继续引领潮流。人工智能和机器学习技术将更加成熟,应用领域不断扩展。预计无人驾驶汽车将正式进入大规模商业化阶段,极大提升交通效率与安全性。此外,随着5G网络的
- 2025最新版:用Python快速上手人工智能与机器学习
请为小H留灯
人工智能python机器学习
一、前言1.1AI与机器学习的崛起1.2Python的独特优势二、迈入机器学习世界2.1机器学习概述2.1.1机器学习的分类与应用领域2.2监督学习2.2.1线性回归与决策树2.2.2支持向量机与随机森林2.3无监督学习2.3.1聚类与降维2.3.2自组织映射与关联规则2.4模型评估与调优:2.4.1交叉验证与超参数调优的常见技巧三、深度学习揭秘3.1深度学习基础3.1.1深度学习的关键概念与应用
- 深入解析Python爬虫:抓取直播平台数据,包括观众数、弹幕等信息
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言java大数据
引言随着直播行业的快速发展,直播平台成为了许多人分享与互动的地方。直播平台上不仅有精彩的内容,还有实时的观众互动、弹幕交流等重要数据。这些数据对于分析直播趋势、用户行为以及提升直播内容质量有着重要的价值。因此,如何通过Python爬虫抓取直播平台上的直播数据,尤其是观众数、弹幕内容等,成为了数据分析和机器学习中非常有趣且实用的任务。在本文中,我们将介绍如何使用Python构建一个高效的爬虫,抓取直
- MySQL遇到AI:字节跳动开源 MySQL 虚拟索引 VIDEX
字节跳动开源
mysql人工智能开源虚拟索引技术解耦架构
虚拟索引技术(virtualindex,也称为hypotheticalindex)在数据库系统的查询优化、索引推荐等场景中扮演着关键角色。简单来说,虚拟索引可以理解为数据库的’沙盘推演’系统——无需真实构建索引,仅基于统计信息即可精准模拟不同索引方案对查询计划的优化效果。由于虚拟索引的创建/删除代价极低,使用者可以大量创建和删除索引、反复推演,确定最有效的索引方案。在AI时代,基于机器学习模型的N
- 【揭秘】什么是AI写作?AI写作是助手还是威胁?
ychenhub
AIGCAI写作AIGCAI写作ai写作
什么是AI写作?AI写作是指利用人工智能技术,特别是自然语言处理(NLP)和机器学习(ML)技术,结合深度学习算法,通过大规模语料库和预训练模型来模仿和生成人类语言文本内容的过程。它通过分析大量的语言数据、学习语言的模式、规律和结构,从而能够掌握语法、词汇、句子结构等语言要素,并生成与输入数据相似或符合特定需求的文本内容。AI写作可以应用于多种场景,如新闻报道、广告文案、社交媒体推文、小说创作、诗
- 人工智能入门(1)
反方向的钟儿
人工智能人工智能nlp大数据云计算计算机视觉深度学习机器学习
人工智能导引文章目录人工智能导引artifiicialintelligence由图灵测试出发的六个领域贝叶斯方法分析成为大多数AI系统中不确定推理的现代方法基础研究方法机器学习计算机利用已经有的数据样本,得出某种规律模型,并利用模型预测未来的一种方法==回归算法==线性回归和逻辑回归神经网络ANN人工神经网络模型支持向量机SVM聚类计算机视觉自然语言处理NLP==群体智能==目前主要的两种方法是=
- 机器学习knnlearn3
XW-ABAP
机器学习人工智能
mportnumpyasnpimportoperator"""Parameters:inX-用于分类的数据(测试集)dataSet-用于训练的数据(训练集)labes-分类标签k-kNN算法参数,选择距离最小的k个点Returns:sortedClassCount[0][0]-分类结果"""#函数说明:kNN算法,分类器defclassify0(inX,dataSet,labels,k):#num
- 机器学习knnlearn5
XW-ABAP
机器学习机器学习人工智能
importnumpyasnpfromosimportlistdirfromsklearn.neighborsimportKNeighborsClassifieraskNN#此函数用于将一个32x32的文本文件转换为一个1x1024的一维向量defimg2vector(filename):"""将32x32的文本文件转换为1x1024的向量:paramfilename:要转换的文本文件的文件名:r
- 什么是大模型?这篇指南让你彻底明白!
AI产品经理
数据库java服务器开发语言人工智能
大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的基本概念出发,对大模型领域容易混淆的相关概念进行区分,并就大模型的发展历程、特点和分类、泛化与微调进行了详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。前排提示,文末有大模型AGI-CSDN独家资料包哦!本文目录如下:·大模型的定义·大模型相关概念区分·大模型的发展历程·大模型的特点·大模型的分类·大模型的泛化与微调
- 2025年大模型学习路线:神仙级教程无私分享,助你成为AI领域高手!大模型学习路线就看这一篇就够了!
大模型入门教程
学习人工智能AI大模型大模型大模型学习大模型教程程序员
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen