Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
【抛砖】
考察动态规划,这里从底层开始,逐层往上层动态求和,最后得到的最小和就是dp[0]:
public int minimumTotal(List<List<Integer>> triangle) { int[] dp = new int[triangle.size() + 1]; for (int i = triangle.size() - 1; i >= 0; i--) for (int j = 0; j < triangle.get(i).size(); j++) dp[j] = triangle.get(i).get(j) + Math.min(dp[j], dp[j + 1]); return dp[0]; }
43 / 43 test cases passed. Runtime: 6 ms Your runtime beats 40.91% of javasubmissions.
【补充】
同样的动归,采用深度优先,很容易想到用递归法,但是这种方法在数据量很大时超时了:
public int minimumTotal(List<List<Integer>> triangle) { return findMinPath(triangle, 0, Integer.MAX_VALUE, 0, 0); } public int findMinPath(List<List<Integer>> triangle, int curSum, int min, int index, int level) { curSum += triangle.get(level).get(index); if (level == triangle.size() - 1) return Math.min(min, curSum); return Math.min(findMinPath(triangle, curSum, min, index, level + 1), findMinPath(triangle, curSum, min, index + 1, level + 1)); }
欢迎优化!