Light OJ-1082 - Array Queries,线段树区间查询最大值,哈哈,水过~~

                                                                                                              1082 - Array Queries
Time Limit: 3 second(s) Memory Limit: 64 MB

Given an array with N elements, indexed from 1 to N. Now you will be given some queries in the form I J, your task is to find the minimum value from index I toJ.

Input

Input starts with an integer T (≤ 5), denoting the number of test cases.

The first line of a case is a blank line. The next line contains two integers N (1 ≤ N ≤ 105)q (1 ≤ q ≤ 50000). The next line contains N space separated integers forming the array. There integers range in [0, 105].

The next q lines will contain a query which is in the form I J (1 ≤ I ≤ J ≤ N).

Output

For each test case, print the case number in a single line. Then for each query you have to print a line containing the minimum value between index I and J.

Sample Input

Output for Sample Input

2

 

5 3

78 1 22 12 3

1 2

3 5

4 4

 

1 1

10

1 1

Case 1:

1

3

12

Case 2:

10

Note

Dataset is huge. Use faster I/O methods.



       哈哈,第一次在light oj上做题,居然碰到了这个水题,,虽然还不知道这个oj的含义,不过应该蛮有影响力的,这题很适合初学线段树的人,虽然我学的不是很好,不过对于这种简单线段树的题,还是不在话下的;

       其实看样例就可以知道他是什么意思了,给定一个数组,求某个区间的最小值,这就是典型的线段树了,连区间更新都不用,纯粹是查询;初学线段树的时候记得父亲节点是储存两个子节点的和,我们就可以用父亲节点来储存子节点的最小值了,一个简单的建树函数和一个查询函数就搞定了;看代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=100000+10;
int n,m,s[N];
struct node
{
    int l,r,n;
}a[N<<2];
void build(int l,int r,int k)
{
    a[k].l=l,a[k].r=r;
    if(l==r)
    {
        a[k].n=s[l];
        return ;
    }
    int mid=(l+r)/2;
    build(l,mid,2*k);
    build(mid+1,r,2*k+1);
    a[k].n=min(a[k*2].n,a[k*2+1].n);//回溯将最小值储存在根节点上,然后层层回溯上去;
}
int query(int l,int r,int k)
{
    if(a[k].l==l&&a[k].r==r)
        return a[k].n;
    int mid=(a[k].l+a[k].r)/2;
    if(l>mid) return query(l,r,k*2+1);
    if(r<=mid) return query(l,r,2*k);
    return min(query(l,mid,2*k),query(mid+1,r,2*k+1));
}
int main()
{
   int t;
   scanf("%d",&t);
   int  t1=t;
   while(t--)
   {
       scanf("%d%d",&n,&m);
       for(int i=1;i<=n;i++)
        scanf("%d",&s[i]);
       build(1,n,1);
       printf("Case %d:\n",t1-t);
       while(m--)
       {
           int a,b;
           scanf("%d%d",&a,&b);
           if(a==b)
            printf("%d\n",s[a]);
           else
           printf("%d\n",query(a,b,1));
       }
   }
   return 0;
}
代码写出来相比于其他线段树来讲已经是很简洁的代码了~~


你可能感兴趣的:(线段树区间最值)