<html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="viewport" content="initial-scale=1.0, user-scalable=no" /> <style type="text/css"> </style> <title>浏览器定位</title> </head> <body> <p>月出月落时间分别为:</p> <p> ( <span id="demo"></span> )</p> <script type="text/javascript"> /*** * 建立对象,该对象有月出月落时间两个属性 */ var pTime = { dbMoonRise:"1", dbMoonSet:"2", }; /*** * moon(Jingdu,Weidu,Year,Month,Day,TimeZone) 为输入接口函数,输入5个参数(经纬度,年月日,时区),返回值分别为月出月落时间 */ function moon(Jingdu,Weidu,Year,Month,Day,TimeZone){ main(Jingdu,Weidu,Year,Month,Day,TimeZone) return parseInt(pTime.dbMoonRise)+":"+parseInt((pTime.dbMoonRise-parseInt(pTime.dbMoonRise))*60)+" , "+parseInt(pTime.dbMoonSet)+":"+parseInt((pTime.dbMoonSet-parseInt(pTime.dbMoonSet))*60); } function main(Jingdu,Weidu,Year,Month,Day,TimeZone) { GetSunMoonTime(Jingdu,Weidu,Year,Month,Day,TimeZone,pTime); } function GetSunMoonTime(dbLon,dbLat,year,month,day,TimeZone,pTime){ var mjdd = mjd(day,month,year,0); find_moonrise_set(mjdd, TimeZone, dbLon,dbLat,0,0,pTime); } function frac(x){ x -= parseInt(x); return( (x<0) ? x+1.0 : x ); } function lmst( mjd, glong){ // Takes the mjd and the longitude (west negative) and then returns // the local sidereal time in hours. Im using Meeus formula 11.4 // instead of messing about with UTo and so on var lst, t, d; d = mjd - 51544.5; t = d / 36525.0; lst = range(280.46061837 + 360.98564736629 * d + 0.000387933 *t*t - t*t*t / 38710000); lst = lst/15.0 + glong/15.0; if (lst >= 24.0) lst -=24.0; return (lst); } function ipart(x) { // TODO Auto-generated method stub var a; if (x> 0) a = Math.floor(x); else a = Math.ceil(x); return a; } function range( x) { // TODO Auto-generated method stub var a, b; b = x / 360; a = 360 * (b - ipart(b)); if (a < 0 ) a = a + 360; return a; } function minimoon( t) { // TODO Auto-generated method stub var p2 = 6.283185307, arc = 206264.8062, coseps = 0.91748, sineps = 0.39778; var L0, L, LS, F, D, H, S, N, DL, CB, L_moon, B_moon, V, W, X, Y, Z, RHO,dec,ra; var mooneq=new Array(2); L0 = frac(0.606433 + 1336.855225 * t); // mean longitude of moon L = p2 * frac(0.374897 + 1325.552410 * t); //mean anomaly of Moon LS = p2 * frac(0.993133 + 99.997361 * t); //mean anomaly of Sun D = p2 * frac(0.827361 + 1236.853086 * t); //difference in longitude of moon and sun F = p2 * frac(0.259086 + 1342.227825 * t); //mean argument of latitude // corrections to mean longitude in arcsec DL = 22640 * Math.sin(L); DL += -4586 * Math.sin(L - 2*D); DL += +2370 * Math.sin(2*D); DL += +769 * Math.sin(2*L); DL += -668 * Math.sin(LS); DL += -412 * Math.sin(2*F); DL += -212 * Math.sin(2*L - 2*D); DL += -206 * Math.sin(L + LS - 2*D); DL += +192 * Math.sin(L + 2*D); DL += -165 * Math.sin(LS - 2*D); DL += -125 * Math.sin(D); DL += -110 * Math.sin(L + LS); DL += +148 * Math.sin(L - LS); DL += -55 * Math.sin(2*F - 2*D); // simplified form of the latitude terms S = F + (DL + 412 * Math.sin(2*F) + 541* Math.sin(LS)) / arc; H = F - 2*D; N = -526 * Math.sin(H); N += +44 * Math.sin(L + H); N += -31 * Math.sin(-L + H); N += -23 * Math.sin(LS + H); N += +11 * Math.sin(-LS + H); N += -25 * Math.sin(-2*L + F); N += +21 * Math.sin(-L + F); // ecliptic long and lat of Moon in rads L_moon = p2 * frac(L0 + DL / 1296000); B_moon = (18520.0 * Math.sin(S) + N) /arc; // equatorial coord conversion - note fixed obliquity CB = Math.cos(B_moon); X = CB * Math.cos(L_moon); V = CB * Math.sin(L_moon); W = Math.sin(B_moon); Y = coseps * V - sineps * W; Z = sineps * V + coseps * W; RHO = Math.sqrt(1.0 - Z*Z); dec = (360.0 / p2) * Math.atan(Z / RHO); ra = (48.0 / p2) * Math.atan(Y / (X + RHO)); if (ra <0 ) ra += 24; mooneq[1] = dec; mooneq[0] = ra; return mooneq; } function sin_alt(iobj, mjd0, hour, glong, cglat, sglat) { // this rather mickey mouse function takes a lot of // arguments and then returns the sine of the altitude of // the object labelled by iobj. iobj = 1 is moon, iobj = 2 is sun var mjd, t, ra, dec, tau, salt, rads = 0.0174532925; var objpos=new Array(2); mjd = mjd0 + hour/24.0; t = (mjd - 51544.5) / 36525.0; if (iobj == 1) objpos = minimoon(t); // else objpos = minisun(t); ra = objpos[0]; dec = objpos[1]; // hour angle of object tau = 15.0 * (lmst(mjd, glong) - ra); // sin(alt) of object using the conversion formulas salt = sglat * Math.sin(rads*dec) + cglat * Math.cos(rads*dec) *Math.cos(rads*tau); return salt; } function find_moonrise_set(mjd, tz,glong, glat, dls, ST, pTime){ // Im using a separate function for moonrise/set to allow for different tabulations // of moonrise and sun events ie weekly for sun and daily for moon. The logic of // the function is identical to find_sun_and_twi_events_for_date() var sglat, date, ym, yz, utrise = 0, utset = 0,sinho,cglat,xe,ye; var yp, nz, hour, z1, z2, rads = 0.0174532925; var rise, sett,above; var quadout=new Array(5); sinho = Math.sin(rads * 8/60); //moonrise taken as centre of moon at +8 arcmin sglat = Math.sin(rads * glat); cglat = Math.cos(rads * glat); date = mjd - tz/24; rise = "false"; sett = "false"; above = "false"; hour = 1.0; ym = sin_alt(1, date, hour - 1.0, glong, cglat, sglat) - sinho; if (ym > 0.0) above = "true"; while(hour < 25 && (sett == "false"|| rise == "false")) { yz = sin_alt(1, date, hour, glong, cglat, sglat) - sinho; yp = sin_alt(1, date, hour + 1.0, glong, cglat, sglat) - sinho; quadout = quad(ym, yz, yp); nz = quadout[0]; z1 = quadout[1]; z2 = quadout[2]; xe = quadout[3]; ye = quadout[4]; // case when one event is found in the interval if (nz == 1) { if (ym < 0.0) { utrise = hour + z1; rise = "true"; } else { utset = hour + z1; sett = "true"; } } // end of nz = 1 case // case where two events are found in this interval // (rare but whole reason we are not using simple iteration) if (nz == 2) { if (ye < 0.0) { utrise = hour + z2; utset = hour + z1; } else { utrise = hour + z1; utset = hour + z2; } } // set up the next search interval ym = yp; hour += 2.0; } // end of while loop if (rise == "true" || sett == "true" ) { if (rise == "true") { if (ST == 0)pTime.dbMoonRise = utrise+dls; else pTime.dbMoonRise = lmst(mjd+(utrise-tz)/24, glong); } else pTime.dbMoonRise = -1; if (sett == "true") { if (ST == 0)pTime.dbMoonSet = utset+dls; else pTime.dbMoonSet = lmst(mjd+(utset-tz)/24, glong); } else pTime.dbMoonSet = -1; } else pTime.dbMoonSet = -2; } function mjd( day, month, year, hour) { // Takes the day, month, year and hours in the day and returns the // modified julian day number defined as mjd = jd - 2400000.5 // checked OK for Greg era dates - 26th Dec 02 var a, b; if (month <= 2) { month = month + 12; year = year - 1; } a = 10000.0 * year + 100.0 * month + day; if (a <= 15821004.1) b = -2 * Math.floor((year + 4716)/4) - 1179; else b = Math.floor(year/400) - Math.floor(year/100) + Math.floor(year/4); a = 365.0 * year - 679004.0; return (a + b + Math.floor(30.6001 * (month + 1)) + day + hour/24.0); } function quad( ym, yz, yp) { // finds the parabola throuh the three points (-1,ym), (0,yz), (1, yp) // and returns the coordinates of the max/min (if any) xe, ye // the values of x where the parabola crosses zero (roots of the quadratic) // and the number of roots (0, 1 or 2) within the interval [-1, 1] // well, this routine is producing sensible answers // results passed as array [nz, z1, z2, xe, ye] // TODO Auto-generated method stub var a, b, c, dis, dx, xe, ye, z1 = 0, z2 = 0, nz; var quadout=new Array(5); nz = 0; a = 0.5 * (ym + yp) - yz; b = 0.5 * (yp - ym); c = yz; xe = -b / (2 * a); ye = (a * xe + b) * xe + c; dis = b * b - 4.0 * a * c; if (dis > 0) { dx = 0.5 * Math.sqrt(dis) / Math.abs(a); z1 = xe - dx; z2 = xe + dx; if (Math.abs(z1) <= 1.0) nz += 1; if (Math.abs(z2) <= 1.0) nz += 1; if (z1 < -1.0) z1 = z2; } quadout[0] = nz; quadout[1] = z1; quadout[2] = z2; quadout[3] = xe; quadout[4] = ye; return quadout; } document.getElementById("demo").innerHTML=moon(116.47,39.57,2002,12,30,8); //调用例子,将结果写入页面 </script> </body> </html>