本文分析move base 的配置文件,从配置文件设置的角度,可以更清晰的把握move base对于costmap2D,global planner,local planner的调用关系。
这里采用turtlebot_navigation package
为例:
<launch>
<include file="$(find turtlebot_navigation)/launch/includes/velocity_smoother.launch.xml"/>
<include file="$(find turtlebot_navigation)/launch/includes/safety_controller.launch.xml"/>
<arg name="odom_frame_id" default="odom"/>
<arg name="base_frame_id" default="base_footprint"/>
<arg name="global_frame_id" default="map"/>
<arg name="odom_topic" default="odom" />
<arg name="laser_topic" default="scan" />
<arg name="custom_param_file" default="$(find turtlebot_navigation)/param/dummy.yaml"/>
<!-- 以下部分是move base调用,需要配置的文件:包括全局地图,局部地图,全局planner,局部planner -->
<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="local_costmap" />
<rosparam file="$(find turtlebot_navigation)/param/local_costmap_params.yaml" command="load" />
<rosparam file="$(find turtlebot_navigation)/param/global_costmap_params.yaml" command="load" />
<rosparam file="$(find turtlebot_navigation)/param/dwa_local_planner_params.yaml" command="load" />
<rosparam file="$(find turtlebot_navigation)/param/move_base_params.yaml" command="load" />
<rosparam file="$(find turtlebot_navigation)/param/global_planner_params.yaml" command="load" />
<rosparam file="$(find turtlebot_navigation)/param/navfn_global_planner_params.yaml" command="load" />
<!-- external params file that could be loaded into the move_base namespace -->
<rosparam file="$(arg custom_param_file)" command="load" />
<!-- reset frame_id parameters using user input data -->
<param name="global_costmap/global_frame" value="$(arg global_frame_id)"/>
<param name="global_costmap/robot_base_frame" value="$(arg base_frame_id)"/>
<param name="local_costmap/global_frame" value="$(arg odom_frame_id)"/>
<param name="local_costmap/robot_base_frame" value="$(arg base_frame_id)"/>
<param name="DWAPlannerROS/global_frame_id" value="$(arg odom_frame_id)"/>
<remap from="cmd_vel" to="navigation_velocity_smoother/raw_cmd_vel"/>
<remap from="odom" to="$(arg odom_topic)"/>
<remap from="scan" to="$(arg laser_topic)"/>
</node>
</launch>
从上面的配置上来可以看到以下内容,这些都是关于地图的配置:
/param/costmap_common_params.yaml" command="load" ns="global_costmap"
/param/costmap_common_params.yaml" command="load" ns="local_costmap"
/param/local_costmap_params.yaml" command="load"
/param/global_costmap_params.yaml" command="load"
地图配置,首先是采用了一个costmap_common_params.yaml
文件配置了一些公共的参数:
max_obstacle_height: 0.60 # assume something like an arm is mounted on top of the robot
# Obstacle Cost Shaping (http://wiki.ros.org/costmap_2d/hydro/inflation) robot_radius: 0.20 # distance a circular robot should be clear of the obstacle (kobuki: 0.18) # footprint: [[x0, y0], [x1, y1], ... [xn, yn]] # if the robot is not circular map_type: voxel obstacle_layer: enabled: true max_obstacle_height: 0.6 origin_z: 0.0 z_resolution: 0.2 z_voxels: 2 unknown_threshold: 15 mark_threshold: 0 combination_method: 1 track_unknown_space: true #true needed for disabling global path planning through unknown space obstacle_range: 2.5 raytrace_range: 3.0 origin_z: 0.0 z_resolution: 0.2 z_voxels: 2 publish_voxel_map: false observation_sources: scan bump scan: data_type: LaserScan topic: scan marking: true clearing: true min_obstacle_height: 0.25 max_obstacle_height: 0.35 bump: data_type: PointCloud2 topic: mobile_base/sensors/bumper_pointcloud marking: true clearing: false min_obstacle_height: 0.0 max_obstacle_height: 0.15 # for debugging only, let's you see the entire voxel grid #cost_scaling_factor and inflation_radius were now moved to the inflation_layer ns inflation_layer: enabled: true cost_scaling_factor: 5.0 # exponential rate at which the obstacle cost drops off (default: 10) inflation_radius: 0.5 # max. distance from an obstacle at which costs are incurred for planning paths. static_layer: enabled: true
然后分别设定global map 和local map:
global_costmap:
global_frame: /map
robot_base_frame: /base_footprint
update_frequency: 1.0
publish_frequency: 0.5
static_map: true
transform_tolerance: 0.5
<!-- global map引入了以下三层,经融合构成了master map,用于global planner-->
plugins:
- {name: static_layer, type: "costmap_2d::StaticLayer"}
- {name: obstacle_layer, type: "costmap_2d::VoxelLayer"}
- {name: inflation_layer, type: "costmap_2d::InflationLayer"}
local_costmap:
global_frame: odom
robot_base_frame: /base_footprint
update_frequency: 5.0
publish_frequency: 2.0
static_map: false
rolling_window: true
width: 4.0
height: 4.0
resolution: 0.05
transform_tolerance: 0.5
<!-- local map引入了以下两层,经融合构成了master map,用于局部planner-->
plugins:
- {name: obstacle_layer, type: "costmap_2d::VoxelLayer"}
- {name: inflation_layer, type: "costmap_2d::InflationLayer"}
然后是planner的配置:
/param/move_base_params.yaml" command="load"
/param/global_planner_params.yaml" command="load"
/param/navfn_global_planner_params.yaml" command="load"
/param/dwa_local_planner_params.yaml" command="load"
文件move_base_params.yaml
内容
shutdown_costmaps: false
controller_frequency: 5.0 controller_patience: 3.0 planner_frequency: 1.0 planner_patience: 5.0 oscillation_timeout: 10.0 oscillation_distance: 0.2 # local planner - default is trajectory rollout base_local_planner: "dwa_local_planner/DWAPlannerROS" <!--这里配置了local planner为dwa_local_planner --> <!--这里配置了global planner为navfn/NavfnROS --> base_global_planner: "navfn/NavfnROS" #alternatives: global_planner/GlobalPlanner, carrot_planner/CarrotPlanner
对于global planner,可以采用以下三种实现之一:
"navfn/NavfnROS","global_planner/GlobalPlanner","carrot_planner/CarrotPlanner"
然后来看global planner的配置:
GlobalPlanner: # Also see: http://wiki.ros.org/global_planner
old_navfn_behavior: false # Exactly mirror behavior of navfn, use defaults for other boolean parameters, default false
use_quadratic: true # Use the quadratic approximation of the potential. Otherwise, use a simpler calculation, default true
use_dijkstra: true # Use dijkstra's algorithm. Otherwise, A*, default true
use_grid_path: false # Create a path that follows the grid boundaries. Otherwise, use a gradient descent method, default false
allow_unknown: true # Allow planner to plan through unknown space, default true #Needs to have track_unknown_space: true in the obstacle / voxel layer (in costmap_commons_param) to work planner_window_x: 0.0 # default 0.0 planner_window_y: 0.0 # default 0.0 default_tolerance: 0.0 # If goal in obstacle, plan to the closest point in radius default_tolerance, default 0.0 publish_scale: 100 # Scale by which the published potential gets multiplied, default 100 planner_costmap_publish_frequency: 0.0 # default 0.0 lethal_cost: 253 # default 253 neutral_cost: 50 # default 50 cost_factor: 3.0 # Factor to multiply each cost from costmap by, default 3.0 publish_potential: true # Publish Potential Costmap (this is not like the navfn pointcloud2 potential), default true
对于local planner ,有以下两种选择:
"trajectory rollout","dwa_local_planner/DWAPlannerROS"
以下配置了DWAPlannerROS
:
DWAPlannerROS:
# Robot Configuration Parameters - Kobuki
max_vel_x: 0.5 # 0.55
min_vel_x: 0.0
max_vel_y: 0.0 # diff drive robot
min_vel_y: 0.0 # diff drive robot
max_trans_vel: 0.5 # choose slightly less than the base's capability
min_trans_vel: 0.1 # this is the min trans velocity when there is negligible rotational velocity
trans_stopped_vel: 0.1
# Warning!
# do not set min_trans_vel to 0.0 otherwise dwa will always think translational velocities
# are non-negligible and small in place rotational velocities will be created.
max_rot_vel: 5.0 # choose slightly less than the base's capability
min_rot_vel: 0.4 # this is the min angular velocity when there is negligible translational velocity
rot_stopped_vel: 0.4
acc_lim_x: 1.0 # maximum is theoretically 2.0, but we
acc_lim_theta: 2.0
acc_lim_y: 0.0 # diff drive robot
# Goal Tolerance Parameters
yaw_goal_tolerance: 0.3 # 0.05
xy_goal_tolerance: 0.15 # 0.10
# latch_xy_goal_tolerance: false
# Forward Simulation Parameters
sim_time: 1.0 # 1.7
vx_samples: 6 # 3
vy_samples: 1 # diff drive robot, there is only one sample
vtheta_samples: 20 # 20
# Trajectory Scoring Parameters
path_distance_bias: 64.0 # 32.0 - weighting for how much it should stick to the global path plan
goal_distance_bias: 24.0 # 24.0 - wighting for how much it should attempt to reach its goal
occdist_scale: 0.5 # 0.01 - weighting for how much the controller should avoid obstacles
forward_point_distance: 0.325 # 0.325 - how far along to place an additional scoring point
stop_time_buffer: 0.2 # 0.2 - amount of time a robot must stop in before colliding for a valid traj.
scaling_speed: 0.25 # 0.25 - absolute velocity at which to start scaling the robot's footprint
max_scaling_factor: 0.2 # 0.2 - how much to scale the robot's footprint when at speed.
# Oscillation Prevention Parameters
oscillation_reset_dist: 0.05 # 0.05 - how far to travel before resetting oscillation flags
# Debugging
publish_traj_pc : true
publish_cost_grid_pc: true
global_frame_id: odom
# Differential-drive robot configuration - necessary?
# holonomic_robot: false