MultipleInputs用法


MultipleInputs处理多输入源,本例子包括 windows上的mysql数据库数据和hdfs上的文本数据。


mysql数据:

MultipleInputs用法_第1张图片


hdfs数据:

[root@baolibin ~]# hadoop fs -text /input/hehe
Warning: $HADOOP_HOME is deprecated.

hello you
hello me
hello you
hello me



代码:

写的比较简单,这是一个没有reduce的mapreduce,仅仅强调连接多输入源,读出数据:

package hadoop_2_6_0;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBInputFormat;
import org.apache.hadoop.mapreduce.lib.db.DBWritable;
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MultipleInputsTest {

	public static class TextMapper extends
			Mapper<LongWritable, Text, LongWritable, Text> {
		final LongWritable k2 = new LongWritable();
		final Text v2 = new Text();

		protected void map(LongWritable key, Text value,
				Mapper<LongWritable, Text, LongWritable, Text>.Context context)
				throws InterruptedException, IOException {
				v2.set(value.toString());
				context.write(k2, v2);
		}
	}

	public static class DBMapper extends
			Mapper<LongWritable, MyDBWritable, LongWritable, Text> {
		final Text v2 = new Text();

		protected void map(
				LongWritable key,
				MyDBWritable value,
				Mapper<LongWritable, MyDBWritable, LongWritable, Text>.Context context)
				throws InterruptedException, IOException {
			v2.set(value.toString());
			context.write(key, v2);
		}
	}

	public static class MyDBWritable implements Writable, DBWritable {
		int id;
		String name;

		public void write(PreparedStatement statement) throws SQLException {
			statement.setInt(1, id);
			statement.setString(2, name);
		}

		public void readFields(ResultSet resultSet) throws SQLException {
			this.id = resultSet.getInt(1);
			this.name = resultSet.getString(2);
		}

		public void write(DataOutput out) throws IOException {
			out.write(id);
			out.writeUTF(name);
		}

		public void readFields(DataInput in) throws IOException {
			this.id = in.readInt();
			this.name = in.readUTF();
		}

		public String toString() {
			return "MyDBWritable[id=" + id + ",\t" + "name=" + name + "]";
		}
	}

	public static void main(String[] args) throws Exception {
		final Configuration conf = new Configuration();
		//
		DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver","jdbc:mysql://192.168.1.1:3306/oled", "root", "mysqladmin");
		final Job job = Job.getInstance(conf,MultipleInputsTest.class.getSimpleName());
		job.setJarByClass(MultipleInputsTest.class);
		// 1.1
		//FileInputFormat.setInputPaths(job,"hdfs://192.168.1.10:9000/input/hehe");
		job.setMapOutputKeyClass(LongWritable.class);
		job.setMapOutputValueClass(Text.class);

		// 2.2
		job.setOutputKeyClass(LongWritable.class);
		job.setOutputValueClass(Text.class);

		DBInputFormat.setInput(job, MyDBWritable.class,"select id,name from DB", "select count(1) from DB");
		
		MultipleInputs.addInputPath(job, new Path("hdfs://192.168.1.100:9000/input/hehe"), TextInputFormat.class,TextMapper.class);
		MultipleInputs.addInputPath(job, new Path("hdfs://192.168.1.100:9000/"), DBInputFormat.class, DBMapper.class);
		// 2.3
		FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.1.100:9000/DBout1"));

		job.waitForCompletion(true);
	}
}


console输出:

15/04/16 16:06:03 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/04/16 16:06:03 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
15/04/16 16:06:03 WARN mapred.JobClient: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
15/04/16 16:06:04 INFO input.FileInputFormat: Total input paths to process : 1
15/04/16 16:06:04 WARN snappy.LoadSnappy: Snappy native library not loaded
15/04/16 16:06:05 INFO mapred.JobClient: Running job: job_local942775997_0001
15/04/16 16:06:05 INFO mapred.LocalJobRunner: Waiting for map tasks
15/04/16 16:06:05 INFO mapred.LocalJobRunner: Starting task: attempt_local942775997_0001_m_000000_0
15/04/16 16:06:05 INFO mapred.Task:  Using ResourceCalculatorPlugin : null
15/04/16 16:06:05 INFO mapred.MapTask: Processing split: hdfs://192.168.1.100:9000/input/hehe:0+38
15/04/16 16:06:05 INFO mapred.MapTask: io.sort.mb = 100
15/04/16 16:06:05 INFO mapred.MapTask: data buffer = 79691776/99614720
15/04/16 16:06:05 INFO mapred.MapTask: record buffer = 262144/327680
15/04/16 16:06:06 INFO mapred.MapTask: Starting flush of map output
15/04/16 16:06:06 INFO mapred.MapTask: Finished spill 0
15/04/16 16:06:06 INFO mapred.Task: Task:attempt_local942775997_0001_m_000000_0 is done. And is in the process of commiting
15/04/16 16:06:06 INFO mapred.LocalJobRunner: 
15/04/16 16:06:06 INFO mapred.Task: Task 'attempt_local942775997_0001_m_000000_0' done.
15/04/16 16:06:06 INFO mapred.LocalJobRunner: Finishing task: attempt_local942775997_0001_m_000000_0
15/04/16 16:06:06 INFO mapred.LocalJobRunner: Starting task: attempt_local942775997_0001_m_000001_0
15/04/16 16:06:06 INFO mapred.Task:  Using ResourceCalculatorPlugin : null
15/04/16 16:06:06 INFO mapred.MapTask: Processing split: org.apache.hadoop.mapreduce.lib.db.DBInputFormat$DBInputSplit@3c3a1834
15/04/16 16:06:06 INFO mapred.MapTask: io.sort.mb = 100
15/04/16 16:06:06 INFO mapred.MapTask: data buffer = 79691776/99614720
15/04/16 16:06:06 INFO mapred.MapTask: record buffer = 262144/327680
15/04/16 16:06:06 INFO mapred.MapTask: Starting flush of map output
15/04/16 16:06:06 INFO mapred.MapTask: Finished spill 0
15/04/16 16:06:06 INFO mapred.Task: Task:attempt_local942775997_0001_m_000001_0 is done. And is in the process of commiting
15/04/16 16:06:06 INFO mapred.LocalJobRunner: 
15/04/16 16:06:06 INFO mapred.Task: Task 'attempt_local942775997_0001_m_000001_0' done.
15/04/16 16:06:06 INFO mapred.LocalJobRunner: Finishing task: attempt_local942775997_0001_m_000001_0
15/04/16 16:06:06 INFO mapred.LocalJobRunner: Map task executor complete.
15/04/16 16:06:06 INFO mapred.JobClient:  map 100% reduce 0%
15/04/16 16:06:07 INFO mapred.Task:  Using ResourceCalculatorPlugin : null
15/04/16 16:06:07 INFO mapred.LocalJobRunner: 
15/04/16 16:06:07 INFO mapred.Merger: Merging 2 sorted segments
15/04/16 16:06:08 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 127 bytes
15/04/16 16:06:08 INFO mapred.LocalJobRunner: 
15/04/16 16:06:09 INFO mapred.Task: Task:attempt_local942775997_0001_r_000000_0 is done. And is in the process of commiting
15/04/16 16:06:09 INFO mapred.LocalJobRunner: 
15/04/16 16:06:09 INFO mapred.Task: Task attempt_local942775997_0001_r_000000_0 is allowed to commit now
15/04/16 16:06:09 INFO output.FileOutputCommitter: Saved output of task 'attempt_local942775997_0001_r_000000_0' to hdfs://192.168.1.100:9000/DBout1
15/04/16 16:06:09 INFO mapred.LocalJobRunner: reduce > reduce
15/04/16 16:06:09 INFO mapred.Task: Task 'attempt_local942775997_0001_r_000000_0' done.
15/04/16 16:06:10 INFO mapred.JobClient:  map 100% reduce 100%
15/04/16 16:06:10 INFO mapred.JobClient: Job complete: job_local942775997_0001
15/04/16 16:06:10 INFO mapred.JobClient: Counters: 19
15/04/16 16:06:10 INFO mapred.JobClient:   File Output Format Counters 
15/04/16 16:06:10 INFO mapred.JobClient:     Bytes Written=83
15/04/16 16:06:10 INFO mapred.JobClient:   FileSystemCounters
15/04/16 16:06:10 INFO mapred.JobClient:     FILE_BYTES_READ=2727
15/04/16 16:06:10 INFO mapred.JobClient:     HDFS_BYTES_READ=114
15/04/16 16:06:10 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=215188
15/04/16 16:06:10 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=83
15/04/16 16:06:10 INFO mapred.JobClient:   File Input Format Counters 
15/04/16 16:06:10 INFO mapred.JobClient:     Bytes Read=0
15/04/16 16:06:10 INFO mapred.JobClient:   Map-Reduce Framework
15/04/16 16:06:10 INFO mapred.JobClient:     Map output materialized bytes=135
15/04/16 16:06:10 INFO mapred.JobClient:     Map input records=5
15/04/16 16:06:10 INFO mapred.JobClient:     Reduce shuffle bytes=0
15/04/16 16:06:10 INFO mapred.JobClient:     Spilled Records=10
15/04/16 16:06:10 INFO mapred.JobClient:     Map output bytes=113
15/04/16 16:06:10 INFO mapred.JobClient:     Total committed heap usage (bytes)=685178880
15/04/16 16:06:10 INFO mapred.JobClient:     SPLIT_RAW_BYTES=476
15/04/16 16:06:10 INFO mapred.JobClient:     Combine input records=0
15/04/16 16:06:10 INFO mapred.JobClient:     Reduce input records=5
15/04/16 16:06:10 INFO mapred.JobClient:     Reduce input groups=1
15/04/16 16:06:10 INFO mapred.JobClient:     Combine output records=0
15/04/16 16:06:10 INFO mapred.JobClient:     Reduce output records=5
15/04/16 16:06:10 INFO mapred.JobClient:     Map output records=5



结果:

[root@baolibin ~]# hadoop fs -ls /DBout1
Warning: $HADOOP_HOME is deprecated.

Found 2 items
-rw-r--r--   3 Administrator supergroup          0 2015-04-16 16:06 /DBout1/_SUCCESS
-rw-r--r--   3 Administrator supergroup         83 2015-04-16 16:06 /DBout1/part-r-00000
[root@baolibin ~]# hadoop fs -text /DBout1/part-*
Warning: $HADOOP_HOME is deprecated.

0       MyDBWritable[id=1,      name=鲍礼彬]
0       hello you
0       hello me
0       hello you
0       hello me




关键点:

自定义一个数据类型,并实现Writable和DBWritable接口:

public static class MyDBWritable implements Writable, DBWritable

用的是JDBC,指明驱动、要访问数据库、用户名、登陆密码:

DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver","jdbc:mysql://192.168.1.1:3306/oled", "root", "mysqladmin");

指明mapper类及查询条件:

DBInputFormat.setInput(job, MyDBWritable.class,"select id,name from DB", "select count(1) from DB");
添加多输入源:

	MultipleInputs.addInputPath(job, new Path("hdfs://192.168.1.100:9000/input/hehe"), TextInputFormat.class,TextMapper.class);
	MultipleInputs.addInputPath(job, new Path("hdfs://192.168.1.100:9000/"), DBInputFormat.class, DBMapper.class);



你可能感兴趣的:(MultipleInputs用法)