这题第一次做的时候觉得太暴力了。。不敢搞。。今天看了题解,一共有三种方法可以搞:sol 1是用STL暴力的。。简单粗暴,但是考虑到自己的时间复杂度分析以及对数据的理解不够深,比赛的时候还是慎用STL的好。sol 2是用KD树,那是什么。。。无奈只能尝试一下sol 3了。。先求出所有点的最近点对,然后,对于这对点之后出现的点,累加就行了,然后不断减少上界,直到大于1为止(一个点的时候无距离)。要改一下Closest_Pair的模板,使其返回最近点对的下标然后才能减少上界。。。10+Y,给hdu的long long输入输出跪了,最后怒换cin cout。。。。
#include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<fstream> #include<sstream> #include<bitset> #include<vector> #include<string> #include<cstdio> #include<cmath> #include<stack> #include<queue> #include<stack> #include<map> #include<set> #define FF(i, a, b) for(int i=a; i<b; i++) #define FD(i, a, b) for(int i=a; i>=b; i--) #define REP(i, n) for(int i=0; i<n; i++) #define CLR(a, b) memset(a, b, sizeof(a)) #define debug puts("**debug**") #define LL long long #define PB push_back #define eps 1e-10 using namespace std; const LL INF = 1LL << 50; const int N = 500005; template <class T> T sqr(T x) { return x*x; } struct Point { LL x, y; //id1用于求Closest_Pair id2用于求每次找到的上界 int id1, id2; Point(){} Point(LL x, LL y, int id2):x(x), y(y), id2(id2) {} }p[N], point[N], tmpt[N]; int n; bool cmpxy(const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } bool cmpy(const Point& a, const Point& b) { return a.y < b.y; } LL dist(Point a, Point b) //dist函数注意不要sqrt { return sqr(a.x-b.x) + sqr(a.y-b.y); } struct Ans { int l, r; Ans(){} Ans(int l, int r):l(l), r(r){} }; Ans Closest_Pair(int left, int right) { LL d = INF; //由于函数返回结构体 原先模板中只有1或2个点时统一考虑 if(left==right || left+1 == right) return Ans(left, right); int mid = (left+right)>>1; Ans ans1 = Closest_Pair(left, mid); double d1; if(ans1.l == ans1.r) d1 = INF; //只有一个点的时候无距离 else d1 = dist(point[ans1.l],point[ans1.r]); Ans ans2 = Closest_Pair(mid+1, right); double d2; if(ans2.l == ans2.r) d2 = INF; else d2 = dist(point[ans2.l], point[ans2.r]); Ans ret; if(d1 < d2) ret = ans1; else ret = ans2; d = min(d1,d2); int i,j,k=0; for(i = left; i <= right; i++) { if(sqr(point[mid].x-point[i].x) <= d) //这里也需要改 因为dist函数变了 tmpt[k++] = point[i]; } sort(tmpt,tmpt+k,cmpy); for(i = 0; i < k; i++) { for(j = i+1; j < k && sqr(tmpt[i].y-tmpt[j].y) < d; j++)//这里也是。。。 { double d3 = dist(tmpt[i],tmpt[j]); if(d > d3) { d = d3; ret = Ans(tmpt[i].id1, tmpt[j].id1); } } } return ret; } void read() { LL a1, b1, c1, a2, b2, c2; cin>>a1>>b1>>c1>>a2>>b2>>c2; p[0] = Point(0, 0, 0); FF(i, 1, n+1) p[i] = Point((p[i-1].x*a1+b1)%c1, (p[i-1].y*a2+b2)%c2, i); } int main() { int T; scanf("%d", &T); while(T--) { scanf("%d", &n); read(); int end = n; LL ans = 0; while(end > 1) { REP(i, end) point[i] = p[i+1]; sort(point, point+end, cmpxy); REP(i, end) point[i].id1 = i; Ans t = Closest_Pair(0, end-1); int m = max(point[t.l].id2, point[t.r].id2); ans += (end-m+1)*dist(point[t.l], point[t.r]); end = m - 1; } cout<<ans<<endl; } return 0; }