1. Container with most water
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
容积总是由最短板决定,每次移动短板找出最大容积
c++
int maxArea(vector<int> &height) { int start =0; int end = height.size()-1; int maxV = INT_MIN; while(start<end) { int contain = min(height[end], height[start]) * (end-start); maxV = max(maxV, contain); if(height[start]<= height[end]) { start++; } else { end--; } } return maxV; }
java
public int maxArea(int[] height) { if(height.length<2) return 0; int maxV = 0; int start =0; int end = height.length-1; while(start<end){ int area = Math.min(height[start], height[end])*(end-start); maxV = Math.max(maxV, area); if(height[start]>height[end]) end--; else { start++; } } return maxV; }
2. Trapping rain water
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
思路,坐标的最大左右边相减就是该坐标点容积1. 从左到右扫描,找出每个坐标的最大左值
2. 从右到左扫描,找出每个坐标最大右值
3. 累加每个容积。
c++
int trap(int A[], int n) { if(n<2) return 0; int *maxL = new int[n], *maxR = new int[n]; int maxLR = A[0]; maxL[0] = 0; //from left to right cal max lvalue for(int i=1; i<n-1; i++){ maxL[i] = maxLR; if(A[i]>maxLR){ maxLR = A[i]; } } maxLR = A[n-1]; maxR[n-1] = 0; int ttrap = 0, ctrap = 0; for(int i=n-2; i>0;i--){ maxR[i] = maxLR; ctrap = min(maxL[i], maxR[i]) - A[i]; if(ctrap>0) ttrap+= ctrap; if(maxLR < A[i]) maxLR = A[i]; } delete maxL, maxR; return ttrap; }
java
public int trap(int[] A) { if(A.length<2) return 0; int len = A.length; int []maxL = new int [len]; int maxLR = A[0]; maxL[0] = 0; for(int i=1;i<len;i++){ maxL[i] = maxLR; if(A[i]>maxLR) maxLR = A[i]; } maxLR = A[len-1]; int []maxR = new int[len]; maxR[len-1] = 0; int trap = 0; for(int i=len-2;i>=0;i--){ maxR[i] = maxLR; int ctrap = Math.min(maxL[i], maxR[i])-A[i]; if(ctrap>0) trap+=ctrap; if(A[i]>maxLR) maxLR = A[i]; } return trap; }