It's year 2465, and you are the Chief Engineer for Glori ed Lumberjacks Inc. on planet Trie. There is a number of trees
that you need to cut down, and the only weapon you have is a high-powered antimatter ray that will cut through trees like butter. Fuel cells for the antimatter ray are very expensive, so your
strategy is: stand somewhere in the forest and shoot the ray in some chosen direction. This will cut down all the trees
that lie on the line in that direction. Given the locations of several trees and the number of trees that you are required
to cut, what is the minimum number of shots that you need to re?
Input
The rst line of input gives the number of cases, N (at most 20). N test cases follow. Each one starts with 2 lines containing the integers n
(the number of trees in the forest, at most 16) and m (the number of trees you need to cut, at most n). The next n lines will each give the
(x,y) coordinates of a tree (integers in the range [ 1000; 1000]).
Output
For each test case, output the line `Case #x:', where x is the number of the test case. On the next line, print the number of antimatter ray
shots required to cut down at least m trees. Print an empty line between test cases.
Notes:
In the rst test case, you can cut down 4 trees by standing at (0, -1) and ring north (cutting 2 trees) and then standing at (1, -1) and again ring north (
cutting 2 more trees).
In the second test case, you should stand at (3,-1) and re north (cutting 4 trees) and then stand at (-1, -1) and re north-east (cutting 3
more trees).
Sample Input
2
4
4
0 0
0 1
1 0
1 1
9
7
0 0
1 1
0 2
2 0
2 2
3 0
3 1
3 2
3 4
Sample Output
Case #1: 2
Case #2: 2
4、.尽量减枝减少时间
#include<iostream> #include<cstdio> #include<string> #include<cstring> #include<cmath> #include<algorithm> using namespace std; const int inf=0x3f3f3f3f; bool vv[20];//记录是否是之前的直线 int m,beg,da; int v[10000000];//记录去掉点的状态 struct node { int x,y; } a[20]; int dp(int tree,int ans);//搜索 int line(int aa,int bb,int cc);//判断是否是直线 int main() { int ci; scanf("%d",&ci); for(int k=1; k<=ci; k++) { da=inf; memset(v,inf,sizeof(v)); scanf("%d%d",&m,&beg); for(int i=0; i<m; i++) scanf("%d%d",&a[i].x,&a[i].y); printf("Case #%d:\n%d\n",k,dp(0,0)); if(k!=ci) printf("\n"); } return 0; } int dp(int tree,int ans) { if(ans>=da)//减枝1 只搜索比保存结果小的 return ans; memset(vv,0,sizeof(vv)); if(v[tree]!=inf)//减枝2 记忆化搜索 return v[tree]; int w=0; for(int tt=tree; tt>0; tt>>=1) w+=tt&1;//判断数量 if(w>=beg) return da=ans; for(int i=0; i<m; i++) if(!((tree>>i)&1)&&!vv[i])//判断是否倍去点或搜过 for(int j=i+1; j<m; j++) if(!((tree>>j)&1)&&!vv[j])//同上 { vv[i]=vv[j]=1; int tt=tree; tt+=(1<<i)+(1<<j); for(int k=j+1; k<m; k++)//搜索直线上的所有点 if(!((tt>>k)&1))//可以吧 j+1去掉变成直线 if(!vv[k]&&line(i,j,k)) { tt=tt+(1<<k); vv[k]=1; } v[tt]=dp(tt,ans+1); v[tree]=min(v[tree],v[tt]); if(v[tree]==ans+1) return v[tree]; } if(v[tree]==inf) return ans+1; return v[tree]; } int line(int aa,int bb,int cc) { int x1=a[bb].x-a[aa].x; int y1=a[bb].y-a[aa].y; int x2=a[cc].x-a[aa].x; int y2=a[cc].y-a[aa].y; return x1*y2-x2*y1==0?1:0; }