[置顶] DayDayUP_Python自学教程[12]_Python正则表达式

Python正则表达式

正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。
Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式。
re 模块使 Python 语言拥有全部的正则表达式功能。
compile 函数根据一个模式字符串和可选的标志参数生成一个正则表达式对象。该对象拥有一系列方法用于正则表达式匹配和替换。
re 模块也提供了与这些方法功能完全一致的函数,这些函数使用一个模式字符串做为它们的第一个参数。
本章节主要介绍Python中常用的正则表达式处理函数。

compile

re.compile(strPattern[, flag]):

这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符’|’表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile(‘pattern’, re.I | re.M)与re.compile(‘(?im)pattern’)是等价的。
可选值有:

re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
S(DOTALL): 点任意匹配模式,改变'.'的行为
L(LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
U(UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。以下两个正则表达式是等价的:
a = re.compile(r"""\d + # the integral part \. # the decimal point \d * # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")

re提供了众多模块方法用于完成正则表达式的功能。这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,但同时也无法复用编译后的Pattern对象。这些方法将在Pattern类的实例方法部分一起介绍。如上面这个例子可以简写为:

m = re.match(r'hello', 'hello world!')
print m.group()

re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回,在需要大量匹配元字符时有那么一点用。

Match

Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:

  • string: 匹配时使用的文本。
  • re: 匹配时使用的Pattern对象。
  • pos:文本中正则表达式开始搜索的索引。值与Pattern.match()和Patternseach()方法的同名参数相同。
  • endpos:文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  • lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。 lastgroup:
    最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:

  • group([group1,
    …]):获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
  • groups([default]):以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
  • groupdict([default]):返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
  • start([group]): 返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
  • end([group]): 返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
  • span([group]): 返回(start(group), end(group))。
  • expand(template):将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符’0’,只能使用\g<1>0。

Pattern

Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造。

Pattern提供了几个可读属性用于获取表达式的相关信息:

pattern: 编译时用的表达式字符串。
flags: 编译时用的匹配模式。数字形式。
groups: 表达式中分组的数量。
groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。

import re
p = re.compile(r'(\w+) (\w+)(?P<sign>.*)', re.DOTALL)

print "p.pattern:", p.pattern
print "p.flags:", p.flags
print "p.groups:", p.groups
print "p.groupindex:", p.groupindex

实例方法[ | re模块方法]:

split

split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]): 

按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。

import re

p = re.compile(r'\d+')
print p.split('one1two2three3four4')

### output ###
# ['one', 'two', 'three', 'four', '']

findall

findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]): 

搜索string,以列表形式返回全部能匹配的子串。

import re

p = re.compile(r'\d+')
print p.findall('one1two2three3four4')

finditer

finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]): 

搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。

import re

p = re.compile(r'\d+')
for m in p.finditer('one1two2three3four4'):
    print m.group(),

re.match函数

re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none。
函数语法:

re.match(pattern, string, flags=0)

函数参数说明:

参数  描述
pattern 匹配的正则表达式
string  要匹配的字符串。
flags   标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

匹配成功re.match方法返回一个匹配的对象,否则返回None。
我们可以使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

匹配对象方法  描述
group(num=0)    匹配的整个表达式的字符串,group() 可以一次输入多个组号,在这种情况下它将返回一个包含那些组所对应值的元组。
groups()    返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。

实例 1:

    #!/usr/bin/python
    # -*- coding: UTF-8 -*- 

    import re
    print(re.match('www', 'www.runoob.com').span())  # 在起始位置匹配
    print(re.match('com', 'www.runoob.com'))         # 不在起始位置匹配

实例 2:

#!/usr/bin/python
import re

line = "Cats are smarter than dogs"

matchObj = re.match( r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:
   print "matchObj.group() : ", matchObj.group()
   print "matchObj.group(1) : ", matchObj.group(1)
   print "matchObj.group(2) : ", matchObj.group(2)
else:
   print "No match!!"

注意: group是以正则表达式里面的括号为分组的
eg group(1)=(.) group(2)=(.?)

re.search方法

re.search 扫描整个字符串并返回第一个成功的匹配。
函数语法:

re.search(pattern, string, flags=0)

函数参数说明:

参数  描述
pattern 匹配的正则表达式
string  要匹配的字符串。
flags   标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

匹配成功re.search方法返回一个匹配的对象,否则返回None。
我们可以使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

实例 1:

#!/usr/bin/python
# -*- coding: UTF-8 -*- 

import re
print(re.search('www', 'www.runoob.com').span())  # 在起始位置匹配
print(re.search('com', 'www.runoob.com').span())         # 不在起始位置匹配
以上实例运行输出结果为:
(0, 3)
(11, 14)

实例 2:

#!/usr/bin/python
import re

line = "Cats are smarter than dogs";

searchObj = re.search( r'(.*) are (.*?) .*', line, re.M|re.I)

if searchObj:
   print "searchObj.group() : ", searchObj.group()
   print "searchObj.group(1) : ", searchObj.group(1)
   print "searchObj.group(2) : ", searchObj.group(2)
else:
   print "Nothing found!!" 


以上实例执行结果如下:

searchObj.group() :  Cats are smarter than dogs
searchObj.group(1) :  Cats
searchObj.group(2) :  smarter

实例 3

import re 

# 将正则表达式编译成Pattern对象 
pattern = re.compile(r'world') 

# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None 
# 这个例子中使用match()无法成功匹配 
match = pattern.search('hello world!') 

if match: 
    # 使用Match获得分组信息 
    print match.group() 

re.match与re.search的区别

re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配。
实例:

#!/usr/bin/python
import re

line = "Cats are smarter than dogs";

matchObj = re.match( r'dogs', line, re.M|re.I)
if matchObj:
   print "match --> matchObj.group() : ", matchObj.group()
else:
   print "No match!!"

matchObj = re.search( r'dogs', line, re.M|re.I)
if matchObj:
   print "search --> matchObj.group() : ", matchObj.group()
else:
   print "No match!!" 

re.sub

语法:

re.sub(pattern, repl, string, max=0)

返回的字符串是在字符串中用 RE 最左边不重复的匹配来替换。如果模式没有发现,字符将被没有改变地返回。
可选参数 count 是模式匹配后替换的最大次数;count 必须是非负整数。缺省值是 0 表示替换所有的匹配。
实例:

#!/usr/bin/python
import re

phone = "2004-959-559 # This is Phone Number"

# Delete Python-style comments
num = re.sub(r'#.*$', "", phone)
print "Phone Num : ", num

# Remove anything other than digits
num = re.sub(r'\D', "", phone)    
print "Phone Num : ", num 

以上实例执行结果如下:
Phone Num :  2004-959-559
Phone Num :  2004959559

subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。

import re

p = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'

print p.subn(r'\2 \1', s)

def func(m):
    return m.group(1).title() + ' ' + m.group(2).title()

print p.subn(func, s)

数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式”ab*”如果用于查找”abbbc”,将找到”abbb”。而如果使用非贪婪的数量词”ab*?”,将找到”a”。

反斜杠的困扰

与大多数编程语言相同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反斜杠”\\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\”表示。同样,匹配一个数字的”\d”可以写成r”\d”。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。

正则表达式修饰符 - 可选标志

正则表达式可以包含一些可选标志修饰符来控制匹配的模式。修饰符被指定为一个可选的标志。多个标志可以通过按位 OR(|) 它们来指定。如 re.I | re.M 被设置成 I 和 M 标志:

修饰符 描述
re.I 使匹配对大小写不敏感
re.L 做本地化识别(locale-aware)匹配
re.M 多行匹配,影响 ^ 和 $
re.S 使 . 匹配包括换行在内的所有字符
re.U 根据Unicode字符集解析字符。这个标志影响 \w, \W, \b, \B.
re.X 该标志通过给予你更灵活的格式以便你将正则表达式写得更易于理解。

正则表达式模式

模式字符串使用特殊的语法来表示一个正则表达式:
字母和数字表示他们自身。一个正则表达式模式中的字母和数字匹配同样的字符串。
多数字母和数字前加一个反斜杠时会拥有不同的含义。
标点符号只有被转义时才匹配自身,否则它们表示特殊的含义。
反斜杠本身需要使用反斜杠转义。
由于正则表达式通常都包含反斜杠,所以你最好使用原始字符串来表示它们。模式元素(如 r’/t’,等价于’//t’)匹配相应的特殊字符。
下表列出了正则表达式模式语法中的特殊元素。如果你使用模式的同时提供了可选的标志参数,某些模式元素的含义会改变。

修饰符 描述
^ 匹配字符串的开头
$ 匹配字符串的末尾。
. 匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。
[…] 用来表示一组字符,单独列出:[amk] 匹配 ‘a’,’m’或’k’
[^…] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
re* 匹配0个或多个的表达式。
re+ 匹配1个或多个的表达式。
re? 匹配0个或1个由前面的正则表达式定义的片段,非贪婪方式
re{ n}
re{ n,} 精确匹配n个前面表达式。
re{ n, m} 匹配 n 到 m 次由前面的正则表达式定义的片段,贪婪方式
a| b 匹配a或b
(re) G匹配括号内的表达式,也表示一个组
(?imx) 正则表达式包含三种可选标志:i, m, 或 x 。只影响括号中的区域。
(?-imx) 正则表达式关闭 i, m, 或 x 可选标志。只影响括号中的区域。
(?: re) 类似 (…), 但是不表示一个组
(?imx: re) 在括号中使用i, m, 或 x 可选标志
(?-imx: re) 在括号中不使用i, m, 或 x 可选标志
(?#…) 注释.
(?= re) 前向肯定界定符。如果所含正则表达式,以 … 表示,在当前位置成功匹配时成功,否则失败。但一旦所含表达式已经尝试,匹配引擎根本没有提高;模式的剩余部分还要尝试界定符的右边。
(?! re) 前向否定界定符。与肯定界定符相反;当所含表达式不能在字符串当前位置匹配时成功
(?> re) 匹配的独立模式,省去回溯。
\w 匹配字母数字
\W 匹配非字母数字
\s 匹配任意空白字符,等价于 [\t\n\r\f].
\S 匹配任意非空字符
\d 匹配任意数字,等价于 [0-9].
\D 匹配任意非数字
\A 匹配字符串开始
\Z 匹配字符串结束,如果是存在换行,只匹配到换行前的结束字符串。c
\z 匹配字符串结束
\G 匹配最后匹配完成的位置。
\b 匹配一个单词边界,也就是指单词和空格间的位置。例如, ‘er\b’ 可以匹配”never” 中的 ‘er’,但不能匹配 “verb” 中的 ‘er’。
\B 匹配非单词边界。’er\B’ 能匹配 “verb” 中的 ‘er’,但不能匹配 “never” 中的 ‘er’。
\n, \t, 等. 匹配一个换行符。匹配一个制表符。等
\1…\9 匹配第n个分组的子表达式。
\10 匹配第n个分组的子表达式,如果它经匹配。否则指的是八进制字符码的表达式。

正则表达式实例

字符类

修饰符 描述
[Pp]ython 匹配 “Python” 或 “python”
rub[ye] 匹配 “ruby” 或 “rube”
[aeiou] 匹配中括号内的任意一个字母
[0-9] 匹配任何数字。类似于 [0123456789]
[a-z] 匹配任何小写字母
[A-Z] 匹配任何大写字母
[a-zA-Z0-9] 匹配任何字母及数字
[^aeiou] 除了aeiou字母以外的所有字符
[^0-9] 匹配除了数字外的字符

特殊字符类

修饰符 描述
. 匹配除 “\n” 之外的任何单个字符。要匹配包括 ‘\n’ 在内的任何字符,请使用象 ‘[.\n]’ 的模式。
\d 匹配一个数字字符。等价于 [0-9]。
\D 匹配一个非数字字符。等价于 [^0-9]。
\s 匹配任何空白字符,包括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。
\S 匹配任何非空白字符。等价于 [^ \f\n\r\t\v]。
\w 匹配任何非单词字符。等价于 ‘[^A-Za-z0-9_]’。

你可能感兴趣的:([置顶] DayDayUP_Python自学教程[12]_Python正则表达式)