HLG 1012 Catch that cow (广搜)

广度优先队列(BFS)----

链接:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1012


Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.

* Walking: FJ can move from any point X to the points - 1 or + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.

If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

Sample Input :

5 17

100 100

Sample Output:

4

0


这个第一个代码我写的很具体,把广搜的每一个步骤,每一个过程,队列的五种操作都列的很清楚,下面这个广搜过程(BFS)函数可用来当做模板用 --- 如果觉得不错的话,第二个代码也提交了一次,写的比较抽象,不那么容易看懂,但是比较简洁;不过,对于不同的你来说,理解了这种方法,这种过程最重要; 最基本的广搜问题;

The Code Follows: 


#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>

using namespace std;

const int MAX = 100001;
const int LEFT = 0;
const int RIGHT = 100000;
bool flag[MAX];

typedef struct queue_
{
    int q[MAX];
    int steps[MAX];
    int head, tail;
    void init()   //初始化队列;
    {
        head = tail = 0;
        memset(steps, 0, sizeof(steps));
    }

    void in(int element)  //入列;
    {
        q[tail++] = element;
    }

    int out()  //出列;
    {
        return q[head++];
    }

    bool empty()   //清空队列;
    {
        return (tail - head == 0);
    }
}queue;

queue Q;

inline bool inMap(int position)
{
   return (LEFT <= position && position <= RIGHT);
}

inline void func(queue& Q, bool flag[], int position, int stp)
{
   Q.in(position);
   Q.steps[position] = stp;
   flag[position] = true;
}

int BFS(queue& Q, int start, int target)
{
   Q.init();
   Q.in(start);
   memset(flag, false, sizeof(flag));
   flag[start] = true;
   while (!Q.empty()) {
      int tmp = Q.out();
      int stp = Q.steps[tmp];
      if (tmp == target) {
         return stp;
      }else {
         if (inMap(tmp+1) && !flag[tmp+1]) {
            func(Q, flag, tmp+1, stp+1);
         }
         if (inMap(tmp-1) && !flag[tmp-1]) {
            func(Q, flag, tmp-1, stp+1);
         }
         if (inMap(tmp*2) && !flag[tmp*2]) {
            func(Q, flag, tmp*2, stp+1);
         }
      }
   }
}

int main()
{
   int n, k;
   while (scanf("%d%d", &n, &k) != EOF) {
      printf("%d\n", BFS(Q, n, k));
   }
   return 0;
}

Methods II :


#include <iostream>
#include <cstdio>
#include <cstring>
#define MAXN 1000005
using namespace std;

typedef struct Node_ {
    int step, x;
}Node;

Node q[MAXN];

int s[3], v[MAXN];

int main() {
    int n, k;

    while(~scanf("%d%d", &n, &k)) {
        memset(v, 0, sizeof(v));
        memset(s, 0, sizeof(s));
        int rear = 0, front = 0, ii;
        int x1, x2, x3, flag = 0, ans = 0;
        q[rear].x = n;
        q[rear++].step = 0;
        v[n] = 1;

        while(front < rear) {
            ii = q[front].x;
            if(ii == k) {
                flag = 1;
                ans = q[front].step;
                break;
            }
            s[0]= ii + 1; s[1] = ii - 1; s[2] = ii*2;
            for(int i=0; i<3; i++) {
                if(s[i]>=0 && s[i]<=MAXN && !v[s[i]]) {
                    q[rear].x = s[i];
                    q[rear++].step = q[front].step + 1;
                    v[s[i]] = 1;
                }
            }
            front++;
        }
        if(flag) {
            printf("%d\n", ans);
        }
    }
}
后续解法待续。。。

你可能感兴趣的:(搜索,typedef,bfs,队列的五种操作,广度优先队列)