绘制直方图以及均衡化处理

/*
直方图均衡化
*/
#include<opencv2\opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;

void histogramcalculation(const Mat &img, Mat &histoImage);    //得到直方图

int main() {
	Mat img_org, img_tem;
	Mat histImage,histImage2;

	img_org = imread("D://图片//5.jpg");
	if (img_org.empty()) {
		cout << "图片加载失败!" << endl;
		return -1;
	}
	imshow("show_org", img_org);        //显示原始图片

	vector<Mat> bgr_channels;
	split(img_org, bgr_channels);      //把每个通道的信息分离出来

	histogramcalculation(img_org, histImage);    //调用函数得到直方图
	imshow("histImage_show", histImage);

	equalizeHist(bgr_channels[0], bgr_channels[0]);
	equalizeHist(bgr_channels[1], bgr_channels[1]);
	equalizeHist(bgr_channels[2], bgr_channels[2]);      //直方图均衡化,每个通道分别均衡

	merge(bgr_channels, img_tem);       //把处理完的通道信息合并到新的图像中去

	imshow("result_show", img_tem);         //显示均衡化后的图像

	histogramcalculation(img_tem, histImage2);   //再次调用画直方图函数,显示均衡处理后的图像的直方图
	imshow("histImage_result", histImage2);

	waitKey(0);
	return 0;
}

void histogramcalculation(const Mat & img, Mat & histoImage)     //画直方图,后者为输出图像,引用改变其值
{
	int histSize = 255;
	float range[] = { 0,256 };  //每个像素值在0~255间
	const float* histRange = { range };
	bool uniform = true;
	bool accumulate = false;

	Mat b_hist, g_hist, r_hist;
	vector<Mat> bgr_channels;
	split(img, bgr_channels);      //得到每个通道的信息

	calcHist(&bgr_channels[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate);   //计算各直方图
	calcHist(&bgr_channels[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate);
	calcHist(&bgr_channels[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate);

	int hist_w = 600, hist_h = 400;   //直方图的整体大小
	int bin_w = cvRound((double)hist_w / histSize);        //根据图的宽度均分得到每个bin的宽度

	Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(120, 55, 133));      //组合整合所有的直方图显示的最后结果图片

	normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());   //结果归一化到直方图显示图上
	normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
	normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());

	for (int i = 1; i < histSize; i++) {      //绘制直方图
		line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))), Point(bin_w*i, hist_h - cvRound(b_hist.at<float>(i))), Scalar(255, 0, 0), 2);
		line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))), Point(bin_w*i, hist_h - cvRound(g_hist.at<float>(i))), Scalar(0, 255, 0), 2);
		line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))), Point(bin_w*i, hist_h - cvRound(r_hist.at<float>(i))), Scalar(0, 0, 255), 2);
	}
	histoImage = histImage;     //赋值
}

运行结果:

绘制直方图以及均衡化处理_第1张图片

也可以分开显示:

/*
分开显示直方图
*/
#include<opencv2\opencv.hpp>    
#include<iostream>
using namespace cv;
using namespace std;

int main() {
	Mat img_org = imread("D://图片//5.jpg");
	Mat b_hist, g_hist, r_hist;
	int histSize = 255;
	float range[] = { 0,256 };
	const float* histRange = { range };

	if (img_org.empty()) {
		cout << "图片加载失败!" << endl;
		return -1;
	}

	vector<Mat> bgr_channels;
	split(img_org, bgr_channels);

	int hist_w = 600, hist_h = 400;
	int bin_w = cvRound((double)hist_w / histSize);

	Mat B_hist(hist_h, hist_w, CV_8UC3, Scalar(33, 0, 122));
	Mat G_hist(hist_h, hist_w, CV_8UC3, Scalar(33, 0, 122));
	Mat R_hist(hist_h, hist_w, CV_8UC3, Scalar(33, 0, 122));

	calcHist(&bgr_channels[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange);
	calcHist(&bgr_channels[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange);
	calcHist(&bgr_channels[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange);

	normalize(b_hist, b_hist, 0, B_hist.rows, NORM_MINMAX, -1, Mat());   
	normalize(g_hist, g_hist, 0, G_hist.rows, NORM_MINMAX, -1, Mat());
	normalize(r_hist, r_hist, 0, R_hist.rows, NORM_MINMAX, -1, Mat());

	for (int i = 1; i < histSize; i++) {
		line(B_hist, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))), Point(bin_w*i, hist_h - cvRound(b_hist.at<float>(i))), Scalar(255, 0, 0), 2);
		line(G_hist, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))), Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))), Scalar(0, 255, 0), 2);
		line(R_hist, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))), Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))), Scalar(0, 0, 255), 2);
	}
	
	imshow("b_hist", B_hist);
	imshow("g_hist", G_hist);
	imshow("r_hist", R_hist);

	waitKey(0);
	destroyAllWindows;

	return 0;
}

运行结果如下:

绘制直方图以及均衡化处理_第2张图片

你可能感兴趣的:(绘制直方图以及均衡化处理)