PDF (English) | Statistics | Forum |
Time Limit: 2 second(s) | Memory Limit: 32 MB |
You task is to find minimal natural number N, so thatN! contains exactly Q zeroes on the trail in decimal notation. Asyou know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero onthe trail.
Input starts with an integer T (≤ 10000),denoting the number of test cases.
Each case contains an integer Q (1 ≤ Q ≤ 108)in a line.
For each case, print the case number and N. If nosolution is found then print 'impossible'.
Sample Input |
Output for Sample Input |
3 1 2 5 |
Case 1: 5 Case 2: 10 Case 3: impossible |
#include<stdio.h> #include<math.h> #include<string.h> #include<stack> #include<set> #include<queue> #include<vector> #include<iostream> #include<algorithm> #define MAXN 101000 #define LL long long #define ll __int64 #define INF 0xfffffff #define mem(x) memset(x,0,sizeof(x)) #define PI acos(-1) #define eps 1e-8 using namespace std; ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;} double dpow(double a,ll b){double ans=1.0;while(b){if(b%2)ans=ans*a;a=a*a;b/=2;}return ans;} //head int fun(int x) { int sum=0; while(x) { sum+=x/5; x/=5; } return sum; } int main() { int t; int cas=0; scanf("%d",&t); while(t--) { int n; scanf("%d",&n); int l=5,r=500000000; int mid; while(l<=r) { mid=(l+r)/2; int k=fun(mid); if(k<n) l=mid+1; else r=mid-1; } int ans=fun(l); if(ans==n) printf("Case %d: %d\n",++cas,l); else printf("Case %d: impossible\n",++cas); } return 0; }