HDU-2489 Minimal Ratio Tree(最小生成树[Prim])

Minimal Ratio Tree

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)

Problem Description

For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the 
following equation.



Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, 
which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among 
all the trees of m nodes in the graph.

Input

Input contains multiple test cases. The first line of each test case contains two integers 
n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the 
number of nodes in the minimal ratio tree. Two zeros end the input. The next line contains n 
numbers which stand for the weight of each node. The following n lines contain a diagonally 
symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting 
one node with another. Of course, the diagonal will be all 0, since there is no edge connecting 
a node with itself.



All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) 
are integers and in the range of [1, 100].

The figure below illustrates the first test case in sample input. Node 1 and Node 3 form 
the minimal ratio tree. 
HDU-2489 Minimal Ratio Tree(最小生成树[Prim])_第1张图片

Output

For each test case output one line contains a sequence of the m nodes which constructs 
the minimal ratio tree. Nodes should be arranged in ascending order. If there are several 
such sequences, pick the one which has the smallest node number; if there's a tie, look 
at the second smallest node number, etc. Please note that the nodes are numbered from 1 .

Sample Input

3 2
30 20 10
0 6 2
6 0 3
2 3 0
2 2
1 1
0 2
2 0
0 0

Sample Output

1 3
1 2


好多次都能想到正解,但是不敢去写,还是需要勇于尝试,不断地尝试才能有更多的理解。

数据范围很小,枚举每一种点的组合情况即可。


#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const double EPS=0.000001;
int ans,sume,sumv;
int n,u,m,w[17],g[17][17];
int ori,cnt,vis,dis[17],pre;
double minr,tmp;

void Prim() {
    int i,j;
    memset(dis,0x3f,sizeof(dis));
    vis=ori,sume=sumv=0;
    for(i=1;i<=n;++i)
        if((vis&(1<<i))==0) {
            dis[i]=0;
            break;
        }
    for(j=1;j<=m;++j) {
        u=0;
        for(i=1;i<=n;++i)
            if(!(vis&(1<<i))&&dis[u]>dis[i])
                u=i;
        vis|=1<<u;
        sume+=dis[u];
        sumv+=w[u];
        for(i=1;i<=n;++i)
            dis[i]=min(dis[i],g[u][i]);
    }
    if(minr-EPS>(tmp=double(sume)/sumv)) {
        minr=tmp;
        ans=ori;
    }
}

void DFS(int i) {
    if(cnt==pre) {
        Prim();
        return ;
    }
    if(i>n)
        return ;
    DFS(i+1);
    ++cnt;
    ori|=1<<i;
    DFS(i+1);
    --cnt;
    ori&=~(1<<i);
}

int main() {
    int i,j;
    while(scanf("%d%d",&n,&m),n||m) {
        for(i=1;i<=n;++i)
            scanf("%d",&w[i]);
        for(i=1;i<=n;++i)
            for(j=1;j<=n;++j)
                scanf("%d",&g[i][j]);
        minr=999999999;
        ori=cnt=0;
        pre=n-m;
        DFS(1);
        for(i=1;i<=n;++i)
            if(!(ans&(1<<i))) {
                printf("%d",i++);
                break;
            }
        for(;i<=n;++i)
            if(!(ans&(1<<i)))
                printf(" %d",i);
        printf("\n");
    }
    return 0;
}


你可能感兴趣的:(最小生成树,图论,HDU,Prim)