题意:
有16种颜色的球,现在有n个这样的球排成一列,要求将这些球变成所有相同颜色必须在一起的状态,每次只能交换相邻的球。
题解:
这题的做法并不知道如何解释,只是意会了而已。
预处理出每种颜色的球变换到其他颜色的球前面对应的步数,事实上这个步数是相对某个状态来说的。然后就是状态压缩,每次添加一种颜色的球进去。
注意:预处理也是有技巧的,暴力必然超时。
#include<iostream> #include<math.h> #include<stdio.h> #include<algorithm> #include<string.h> #include<string> #include<vector> #include<queue> #include<map> #include<set> #include<stack> #define B(x) (1<<(x)) using namespace std; typedef long long ll; typedef unsigned long long ull; const int oo = 0x3f3f3f3f; const ll OO = 0x3f3f3f3f3f3f3f3f; const double eps = 1e-9; #define lson rt<<1 #define rson rt<<1|1 void cmax(int& a, int b){ if (b > a)a = b; } void cmin(int& a, int b){ if (b < a)a = b; } void cmax(ll& a, ll b){ if (b > a)a = b; } void cmin(ll& a, ll b){ if (b < a)a = b; } void cmax(double& a, double b){ if (a - b < eps) a = b; } void cmin(double& a, double b){ if (b - a < eps) a = b; } void add(int& a, int b, int mod){ a = (a + b) % mod; } void add(ll& a, ll b, ll mod){ a = (a + b) % mod; } const int MOD = 100007; const int maxn = 110000; ll dp[B(17)], cost[20][20]; vector<int>id[20]; void Init(int n){ for (int i = 1; i <= n; i++){ for (int j = 1; j <= n; j++){ if (i == j) continue; int sum = 0; int t = 0; for (int k = 0; k < id[i].size(); k++){ while (t < id[j].size() && id[j][t] < id[i][k])t++; sum += t; } cost[i - 1][j - 1] = sum; } } } int main(){ //freopen("E:\\read.txt", "r", stdin); int T, n, k, a, full, cas = 1; scanf("%d", &T); while (T--){ scanf("%d %d", &n, &k); for (int i = 1; i <= k; i++)id[i].clear(); for (int i = 1; i <= n; i++){ scanf("%d", &a); id[a].push_back(i); } Init(k); full = B(k) - 1; for (int s = 0; s <= full; s++)dp[s] = OO; dp[0] = 0; for (int s = 0; s <= full; s++){ if (dp[s] == OO) continue; for (int i = 0; i < k; i++){ if (s&B(i)) continue; ll sum = 0; for (int j = 0; j < k; j++){ if (i == j)continue; if (!(s&B(j)))continue; sum += cost[i][j]; } cmin(dp[s | B(i)], dp[s] + sum); } } printf("Case #%d: %lld\n", cas++, dp[full]); } return 0; }