kafka学习(一)

转载自:http://my.oschina.net/frankwu/blog/303745
               http://www.aboutyun.com/thread-8919-1-1.html
               http://blog.csdn.net/lizhitao/article/details/23743821

1.简介

      Kafka is a distributed, partitioned, replicated commit log service。它提供了类似于JMS的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现。kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer,此外kafka集群有多个kafka实例组成,每个实例(server)成为broker。无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。
kafka学习(一)_第1张图片
 
主要特性:
1)消息持久化
      Apache Kafka设计上是时间复杂度O(1)的磁盘结构,它提供了常量时间的性能,即使是存储海量的信息(TB级)。
2)高吞吐
      Kafka的设计是工作在标准硬件之上,支持每秒数百万的消息。
3)分布式
      Kafka明确支持在Kafka服务器上的消息分区,以及在消费机器集群上的分发消费,维护每个分区的排序语义。
4)多客户端支持
      Kafka系统支持与来自不同平台(如java、.NET、PHP、Ruby或Python等)的客户端相集成。
5)实时
      生产者线程产生的消息对消费者线程应该立即可见,此特性对基于事件的系统(比如CEP系统)是至关重要的。


2.概念

Topics/logs
      一个Topic可以认为是一类消息,每个topic将被分成多个partition(区),每个partition在存储层面是append log文件。任何发布到此partition的消息都会被直接追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),offset为一个long型数字,它是唯一标记一条消息。它唯一的标记一条消息。kafka并没有提供其他额外的索引机制来存储offset,因为在kafka中几乎不允许对消息进行“随机读写”。
kafka学习(一)_第2张图片
      kafka和JMS实现(activeMQ)不同的是:即使消息被消费,消息仍然不会被立即删除.日志文件将会根据broker中的配置要求,保留一定的时间之后删除;比如log文件保留2天,那么两天后,文件会被清除,无论其中的消息是否被消费.kafka通过这种简单的手段,来释放磁盘空间,以及减少消息消费之后对文件内容改动的磁盘IO开支.
      对于consumer而言,它需要保存消费消息的offset,对于offset的保存和使用,有consumer来控制;当consumer正常消费消息时,offset将会"线性"的向前驱动,即消息将依次顺序被消费.事实上consumer可以使用任意顺序消费消息,它只需要将offset重置为任意值.(offset将会保存在zookeeper中)
      kafka集群几乎不需要维护任何consumer和producer状态信息,这些信息有zookeeper保存;因此producer和consumer的客户端实现非常轻量级,它们可以随意离开,而不会对集群造成额外的影响.
      partitions的设计目的有多个.最根本原因是kafka基于文件存储.通过分区,可以将日志内容分散到多个server上,来避免文件尺寸达到单机磁盘的上限,每个partiton都会被当前server(kafka实例)保存;可以将一个topic切分多任意多个partitions,来消息保存/消费的效率.此外越多的partitions意味着可以容纳更多的consumer,有效提升并发消费的能力.

Distribution
      一个Topic的多个partitions,被分布在kafka集群中的多个server上;每个server(kafka实例)负责partitions中消息的读写操作;此外kafka还可以配置partitions需要备份的个数(replicas),每个partition将会被备份到多台机器上,以提高可用性.
      基于replicated方案,那么就意味着需要对多个备份进行调度;每个partition都有一个server为"leader";leader负责所有的读写操作,如果leader失效,那么将会有其他follower来接管(成为新的leader);follower只是单调的和leader跟进,同步消息即可.由此可见,作为leader的server承载了全部的请求压力,因此从集群的整体考虑,有多少个partitions就意味着有多少个"leader",kafka会将"leader"均衡的分散在每个实例上,来确保整体的性能稳定.

Producers
       Producer将消息发布到指定的Topic中,同时Producer也能决定将此消息归属于哪个partition;比如基于"round-robin"方式或者通过其他的一些算法等.

Consumers
      本质上kafka只支持Topic.每个consumer属于一个consumer group;反过来说,每个group中可以有多个consumer.发送到Topic的消息,只会被订阅此Topic的每个group中的一个consumer消费.
      如果所有的consumer都具有相同的group,这种情况和queue模式很像;消息将会在consumers之间负载均衡.
      如果所有的consumer都具有不同的group,那这就是"发布-订阅";消息将会广播给所有的消费者.
      在kafka中,一个partition中的消息只会被group中的一个consumer消费;每个group中consumer消息消费互相独立;可以认为一个group是一个"订阅"者,一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以消费多个partitions中的消息.kafka只能保证一个partition中的消息被某个consumer消费时,消息是顺序的.事实上,从Topic角度来说,消息仍不是有序的.
      kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息.

Consumer Group (CG)
      这是kafka用来实现一个topic消息的广播(发给所有的consumer)和单播(发给任意一个consumer)的手段。一个topic可以有多个CG。topic的消息会复制(不是真的复制,是概念上的)到所有的CG,但每个CG只会把消息发给该CG中的一个consumer。如果需要实现广播,只要每个consumer有一个独立的CG就可以了。要实现单播只要所有的consumer在同一个CG。用CG还可以将consumer进行自由的分组而不需要多次发送消息到不同的topic。

Broker 
      一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。

Partition
      为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列。partition中的每条消息都会被分配一个有序的id(offset)。kafka只保证按一个partition中的顺序将消息发给consumer,不保证一个topic的整体(多个partition间)的顺序。

Offset
      kafka的存储文件都是按照offset.kafka来命名,用offset做名字的好处是方便查找。例如你想找位于2049的位置,只要找到2048.kafka的文件即可。当然the first offset就是00000000000.kafka


Kafka存储策略

      1.kafka以topic来进行消息管理,每个topic包含多个part(ition),每个part对应一个逻辑log,有多个segment组成。
      2.每个segment中存储多条消息,消息id由其逻辑位置决定,即从消息id可直接定位到消息的存储位置,避免id到位置的额外映射。
      3.每个part在内存中对应一个index,记录每个segment中的第一条消息偏移。
      4.发布者发到某个topic的消息会被均匀的分布到多个part上(随机或根据用户指定的回调函数进行分布),broker收到发布消息往对应part的最后一个segment上添加该消息,当某个segment上的消息条数达到配置值或消息发布时间超过阈值时,segment上的消息会被flush到磁盘,只有flush到磁盘上的消息订阅者才能订阅到,segment达到一定的大小后将不会再往该segment写数据,broker会创建新的segment。


kafak系统扩展性

      kafka使用zookeeper来实现动态的集群扩展,不需要更改客户端(producer和consumer)的配置。broker会在zookeeper注册并保持相关的元数据(topic,partition信息等)更新。
      而客户端会在zookeeper上注册相关的watcher。一旦zookeeper发生变化,客户端能及时感知并作出相应调整。这样就保证了添加或去除broker时,各broker间仍能自动实现负载均衡。


kafak和zookeeper的关系

      Producer端使用zookeeper用来"发现"broker列表,以及和Topic下每个partition leader建立socket连接并发送消息.
      Broker端使用zookeeper用来注册broker信息,已经监测partition leader存活性.
      Consumer端使用zookeeper用来注册consumer信息,其中包括consumer消费的partition列表等,同时也用来发现broker列表,并和partition leader建立socket连接,并获取消息.


Consumer与topic关系以及机制

      本质上kafka只支持Topic.每个consumer属于一个consumer group;反过来说,每个group中可以有多个consumer.对于Topic中的一条特定的消息, 只会被订阅此Topic的每个group中的一个consumer消费,此消息不会发送给一个group的多个consumer;那么一个group中所有的consumer将会交错的消费整个Topic.
      如果所有的consumer都具有相同的group,这种情况和JMS queue模式很像;消息将会在consumers之间负载均衡.如果所有的consumer都具有不同的group,那这就是"发布-订阅";消息将会广播给所有的消费者.
      在kafka中,一个partition中的消息只会被group中的一个consumer消费(同一时刻);每个group中consumer消息消费互相独立;我们可以认为一个group是一个"订阅"者,一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以同时消费多个partitions中的消息.
      kafka只能保证一个partition中的消息被某个consumer消费时是顺序的.事实上,从Topic角度来说,当有多个partitions时,消息仍不是全局有序的.通常情况下,一个group中会包含多个consumer,这样不仅可以提高topic中消息的并发消费能力,而且还能提高"故障容错"性,如果group中的某个consumer失效,那么其消费的partitions将会有其他consumer自动接管.kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息.


你可能感兴趣的:(kafka学习(一))