The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]Analysis:
The classic recursive problem.
1. Use a int vector to store the current state, A[i]=j refers that the ith row and jth column is placed a queen.
2. Valid state: not in the same column, which is A[i]!=A[current], not in the same diagonal direction: abs(A[i]-A[current]) != r-i
3. Recursion:
Start: placeQueen(0,n)
if current ==n then print result
else
for each place less than n,
place queen
if current state is valid, then place next queen place Queen(cur+1,n)
end for
end if
Java
public class Solution { List<String[]> result; int[] A; public List<String[]> solveNQueens(int n) { result = new ArrayList<String[]>(); A = new int[n]; nqueens(0, n); return result; } public void nqueens(int cur, int n){ if(cur==n) printres(n); else { for(int i=0;i<n;i++){ A[cur] = i; if(valid(cur)){ nqueens(cur+1, n); } } } } public void printres(int n){ String[] tem = new String[n]; for(int i=0;i<n;i++){ StringBuffer sBuffer = new StringBuffer(); for(int j=0;j<n;j++){ if(j==A[i]) sBuffer.append('Q'); else sBuffer.append('.'); } tem[i] = sBuffer.toString(); } result.add(tem); } public boolean valid(int r){ for(int i=0;i<r;i++){ if(A[i]==A[r]|| Math.abs(A[i]-A[r])==r-i){ return false; } } return true; } }
class Solution { public: void printQueen(vector<int> &A,int n,vector<vector<string>> &result){ vector<string> r; for(int i=0;i<n;i++){ string str(n,'.'); str[A[i]] = 'Q'; r.push_back(str); } result.push_back(r); } bool isValidQueens(vector<int>A,int r){ for(int i=0;i<r;i++){ if((A[i]==A[r])||(abs(A[i]-A[r]))==(r-i)) return false; } return true; } void nqueens(vector<int> A,int cur, int n,vector<vector<string>> &result){ if(cur == n){ printQueen(A,n,result); }else{ for(int i=0;i<n;i++){ A[cur] = i; if(isValidQueens(A,cur)) nqueens(A,cur+1,n,result); } } } vector<vector<string> > solveNQueens(int n) { vector<vector<string>> result; result.clear(); vector<int> A(n,-1); nqueens(A,0,n,result); return result; } };