题目很简单,离散化下,然后dp方程E[i][j] = E[i][j-2]*(1-p) + E[i][j+1]*p + 1;(假设i>=j)
因为存在E[i][j-2]未能计算出来的问题,因此dp无法解决,考虑用高斯消元。
将方程变形 E[i][j] - (1-p)*E[i][j-2] - p*E[i][j+1] = 1;
然后每个状态都有对应的方程,每个方程一个表达式,用高斯消元解这些表达式。结果就是x[0]的解!
#include<iostream> #include<math.h> #include<stdio.h> #include<algorithm> #include<string.h> #include<vector> #include<queue> #include<map> #include<set> #define B(x) (1<<(x)) using namespace std; typedef long long ll; typedef unsigned long long ull; void cmax(int& a, int b){ if (b>a)a = b; } void cmin(int& a, int b){ if (b<a)a = b; } void cmax(ll& a, ll b){ if (b>a)a = b; } void cmin(ll& a, ll b){ if (b<a)a = b; } void add(int& a, int b, int mod){ a = (a + b) % mod; } void add(ll& a, ll b, ll mod){ a = (a + b) % mod; } const int oo = 0x3f3f3f3f; const ll OO = 0x3f3f3f3f3f3f3f3f; const ll MOD = 1000000007; const int maxn = 300; const double eps = 1e-6; double a[maxn][maxn]; int id[maxn][maxn], cnt; double p; void Init(){ for (int i = 0; i < maxn; i++) for (int j = 0; j < maxn; j++) a[i][j] = 0.0; } void build(int n){ cnt = 0; memset(id, -1, sizeof id); for (int i = 0; i < n; i++){ for (int j = 0; j <= i; j++) id[i][j] = cnt++; } Init(); int nx, ny, u, v; for (int i = 0; i < n; i++){ for (int j = 0; j <= i; j++){ u = id[i][j]; a[u][u] = 1.0; a[u][cnt] = 1.0; nx = max(i, j + 1), ny = min(i, j + 1); v = id[nx][ny]; a[u][v] -= p; nx = i, ny = max(0, j - 2); v = id[nx][ny]; a[u][v] -= (1 - p); } } } double Gauss(int n, int m){ int r, c; for (r = 0, c = 0; r < n && c < m; r++, c++){ int k = r; for (; k < n; k++) if (fabs(a[k][c]) > eps) break; if (fabs(a[k][c]) < eps) continue; if (k != r){ for (int j = 0; j <= m; j++) swap(a[k][j], a[r][j]); } for (int i = 0; i < n; i++){ if (i == r) continue; if (fabs(a[i][c]) < eps) continue; double t = a[i][c] / a[r][c]; for (int j = c; j <= m; j++) a[i][j] -= a[r][j] * t; } } return a[0][m] / a[0][0]; } int main(){ //freopen("E:\\read.txt","r",stdin); while (scanf("%lf", &p) != EOF){ build(20); printf("%.6lf\n", Gauss(cnt, cnt)); } return 0; }