昨天刚做了一个搜索题,感觉和这个的剪枝方法很像。
当把剩下的数都选上时依然满足条件,则用组合数优化。
sta[i] 标记的为 从第 i 个到 第 n 张牌一共出现多少个数,最多五十个数,状压就好了。
STL 真心不会调试。。
#include <iostream> #include <algorithm> #include <cstdlib> #include <cstdio> #include <cstring> #include <queue> #include <cmath> #include <stack> #pragma comment(linker, "/STACK:1024000000"); #define EPS (1e-6) #define LL long long #define ULL unsigned long long int #define _LL __int64 #define _INF 0x3f3f3f3f #define Mod 1000000007 using namespace std; int fn[51],sn[51]; LL sta[51]; LL ANS; LL cal[51][51]; void Cal(int n) { int i,j; cal[0][0] = 0; for(i = 1;i <= n; ++i) { for(j = 0;j <= i; ++j) { if(j == 1) cal[j][i] = i; else if(j == 0 || i == j) cal[j][i] = 1; else cal[j][i] = cal[j-1][i-1] + cal[j][i-1]; } } } void dfs(int s,int len,int k,int ans,LL st) { cout<<"s = "<<s<<" len = "<<len<<" k = "<<k<<" ans = "<<ans<<endl; if(ans > k) return ; if(s == len) { ANS++; return ; } int i,temp = 0; for(i = 1;i <= max(10,len); ++i) { if((st&(((LL)1)<<i)) == 0 && (sta[s]&(((LL)1)<<i))) temp++; } if(temp+ans <= k) { for(i = len-s;i >= 0; --i) ANS += cal[i][len-s]; return ; } dfs(s+1,len,k,ans,st); if((st&(((LL)1) << fn[s])) == 0) { st += (((LL)1) << fn[s]); ans++; } if((st&(((LL)1) << sn[s])) == 0) { st += (((LL)1) << sn[s]); ans++; } dfs(s+1,len,k,ans,st); } class TaroCards { public : long long int getNumber(vector<int> f,vector<int> s,int k) { int len,i; for(len = f.size(),i = 0; i < len; ++i) { fn[i] = f[i]; sn[i] = s[i]; } sta[len-1] = (((LL)1) << fn[len-1]); if(fn[len-1] != sn[len-1]) { sta[len-1] += (((LL)1) << sn[len-1]); } for(i = len-2; i >= 0; --i) { sta[i] = sta[i+1]; if((sta[i]&(((LL)1) << fn[i])) == 0) { sta[i] += (((LL)1) << fn[i]); } if((sta[i]&(((LL)1) << sn[i])) == 0) { sta[i] += (((LL)1) << sn[i]); } } ANS = 0; Cal(len); dfs(0,len,k,0,0); return ANS; } friend void dfs(int s,int len,int k,int ans,LL st); friend void Cal(int n); };