数学求解之遗传算法

import java.util.*; 
  
public class Tsp {    
    private String cityName[]={"北京","上海","天津","重庆","哈尔滨","长春","沈阳","呼和浩特","石家庄","太原","济南","郑州","西安","兰州","银川","西宁","乌鲁木齐","合肥","南京","杭州","长沙","南昌","武汉","成都","贵州","福建","台北","广州","海口","南宁","昆明","拉萨","香港","澳门"}; 
    //private String cityEnd[]=new String[34]; 
    private int cityNum=cityName.length;              //城市个数 
    private int popSize = 50;               //种群数量 
    private int maxgens = 20000;            //迭代次数 
    private double pxover = 0.8;            //交叉概率 
    private double pmultation = 0.05;       //变异概率 
    private long[][] distance = new long[cityNum][cityNum]; 
    private int range = 2000;               //用于判断何时停止的数组区间 
      
    private class genotype { 
        int city[] = new int[cityNum];      //单个基因的城市序列 
        long fitness;                      //该基因的适应度 
        double selectP;                        //选择概率 
        double exceptp;                        //期望概率 
        int isSelected;                        //是否被选择 
    } 
    private genotype[] citys = new genotype[popSize]; 
  
    /** 
     *    构造函数,初始化种群 
     */
    public Tsp() { 
        for (int i = 0; i < popSize; i++) { 
            citys[i] = new genotype(); 
            int[] num = new int[cityNum]; 
            for (int j = 0; j < cityNum; j++) 
                num[j] = j; 
            int temp = cityNum; 
            for (int j = 0; j < cityNum; j++) { 
                int r = (int) (Math.random() * temp); 
                citys[i].city[j] = num[r]; 
                num[r] = num[temp - 1]; 
                temp--; 
            } 
            citys[i].fitness = 0; 
            citys[i].selectP = 0; 
            citys[i].exceptp = 0; 
            citys[i].isSelected = 0; 
        } 
        initDistance(); 
    } 
      
    /** 
     *  计算每个种群每个基因个体的适应度,选择概率,期望概率,和是否被选择。 
     */
    public void CalAll(){ 
        for( int i = 0; i< popSize; i++){ 
            citys[i].fitness = 0; 
            citys[i].selectP = 0; 
            citys[i].exceptp = 0; 
            citys[i].isSelected = 0; 
        } 
        CalFitness(); 
        CalSelectP(); 
        CalExceptP(); 
        CalIsSelected(); 
    } 
  
    /** 
     *    填充,将多选的填充到未选的个体当中 
     */
    public void pad(){ 
        int best = 0; 
        int bad = 0; 
        while(true){             
            while(citys[best].isSelected <= 1 && best<popSize-1) 
                best ++; 
            while(citys[bad].isSelected != 0 && bad<popSize-1) 
                bad ++; 
            for(int i = 0; i< cityNum; i++) 
                citys[bad].city[i] = citys[best].city[i]; 
                citys[best].isSelected --; 
                citys[bad].isSelected ++; 
                bad ++;     
            if(best == popSize ||bad == popSize) 
                break; 
        } 
    } 
      
    /** 
     *    交叉主体函数 
     */
    public void crossover() { 
        int x; 
        int y; 
        int pop = (int)(popSize* pxover /2); 
        while(pop>0){ 
            x = (int)(Math.random()*popSize); 
            y = (int)(Math.random()*popSize); 
              
            executeCrossover(x,y);//x y 两个体执行交叉 
            pop--; 
        } 
    } 
      
    /** 
     * 执行交叉函数 
     * @param 个体x 
     * @param 个体y 
     * 对个体x和个体y执行佳点集的交叉,从而产生下一代城市序列 
     */
    private void executeCrossover(int x,int y){ 
        int dimension = 0; 
        for( int i = 0 ;i < cityNum; i++) 
            if(citys[x].city[i] != citys[y].city[i]){ 
                dimension ++; 
            }    
        int diffItem = 0; 
        double[] diff = new double[dimension]; 
  
        for( int i = 0 ;i < cityNum; i++){ 
            if(citys[x].city[i] != citys[y].city[i]){ 
                diff[diffItem] = citys[x].city[i]; 
                citys[x].city[i] = -1; 
                citys[y].city[i] = -1; 
                diffItem ++; 
            }    
        } 
      
        Arrays.sort(diff); 
  
        double[] temp = new double[dimension]; 
        temp = gp(x, dimension); 
  
        for( int k = 0; k< dimension;k++) 
            for( int j = 0; j< dimension; j++) 
                if(temp[j] == k){ 
                    double item = temp[k]; 
                    temp[k] = temp[j]; 
                    temp[j] = item; 
                      
                    item = diff[k]; 
                    diff[k] = diff[j]; 
                    diff[j] = item;    
                } 
        int tempDimension = dimension; 
        int tempi = 0; 
  
        while(tempDimension> 0 ){ 
            if(citys[x].city[tempi] == -1){ 
                citys[x].city[tempi] = (int)diff[dimension - tempDimension]; 
                  
                tempDimension --; 
            }    
            tempi ++; 
        } 
  
        Arrays.sort(diff); 
  
        temp = gp(y, dimension); 
  
        for( int k = 0; k< dimension;k++) 
            for( int j = 0; j< dimension; j++) 
                if(temp[j] == k){ 
                    double item = temp[k]; 
                    temp[k] = temp[j]; 
                    temp[j] = item; 
                      
                    item = diff[k]; 
                    diff[k] = diff[j]; 
                    diff[j] = item;    
                } 
  
        tempDimension = dimension; 
        tempi = 0; 
  
        while(tempDimension> 0 ){ 
            if(citys[y].city[tempi] == -1){ 
                citys[y].city[tempi] = (int)diff[dimension - tempDimension]; 
                  
                tempDimension --; 
            }    
            tempi ++; 
        } 
  
    } 
      
    /** 
     * @param individual 个体 
     * @param dimension    维数 
     * @return 佳点集   (用于交叉函数的交叉点)    在executeCrossover()函数中使用 
     */
    private double[] gp(int individual, int dimension){ 
        double[] temp = new double[dimension]; 
        double[] temp1 = new double[dimension]; 
        int p = 2 * dimension + 3; 
  
        while(!isSushu(p)) 
            p++; 
  
        for( int i = 0; i< dimension; i++){ 
            temp[i] = 2*Math.cos(2*Math.PI*(i+1)/p) * (individual+1); 
            temp[i] = temp[i] - (int)temp[i]; 
            if( temp [i]< 0) 
                temp[i] = 1+temp[i]; 
  
        } 
        for( int i = 0; i< dimension; i++) 
            temp1[i] = temp[i]; 
        Arrays.sort(temp1);  
        //排序 
        for( int i = 0; i< dimension; i++) 
            for( int j = 0; j< dimension; j++) 
                if(temp[j]==temp1[i]) 
                    temp[j] = i;   
        return temp; 
    } 
      
      
    /** 
     *    变异 
     */
    public void mutate(){ 
        double random; 
        int temp; 
        int temp1; 
        int temp2; 
        for( int i = 0 ; i< popSize; i++){ 
            random = Math.random(); 
            if(random<=pmultation){ 
                temp1 = (int)(Math.random() * (cityNum)); 
                temp2 = (int)(Math.random() * (cityNum)); 
                temp = citys[i].city[temp1]; 
                citys[i].city[temp1] = citys[i].city[temp2]; 
                citys[i].city[temp2] = temp; 
  
            } 
        }        
    } 
      
    /** 
     * 打印当前代数的所有城市序列,以及其相关的参数 
     */
    public void print(){ }
    /** 
     * 初始化各城市之间的距离 
     */
    private void initDistance(){ 
        for (int i = 0; i < cityNum; i++) { 
            for (int j = 0; j < cityNum; j++){ 
                distance[i][j] = Math.abs(i-j); 
            } 
        } 
    } 
      
    /** 
     * 计算所有城市序列的适应度 
     */
    private void CalFitness() { 
        for (int i = 0; i < popSize; i++) { 
            for (int j = 0; j < cityNum - 1; j++) 
                citys[i].fitness += distance[citys[i].city[j]][citys[i].city[j + 1]]; 
            citys[i].fitness += distance[citys[i].city[0]][citys[i].city[cityNum - 1]]; 
        } 
    } 
      
    /** 
     * 计算选择概率 
     */
    private void CalSelectP(){ 
        long sum = 0; 
        for( int i = 0; i< popSize; i++) 
            sum += citys[i].fitness; 
        for( int i = 0; i< popSize; i++) 
            citys[i].selectP = (double)citys[i].fitness/sum; 
  
    } 
      
    /** 
     * 计算期望概率 
     */
    private void CalExceptP(){ 
        for( int i = 0; i< popSize; i++) 
            citys[i].exceptp = (double)citys[i].selectP * popSize; 
    } 
      
    /** 
     * 计算该城市序列是否较优,较优则被选择,进入下一代 
     */
    private void CalIsSelected(){ 
        int needSelecte = popSize; 
        for( int i = 0; i< popSize; i++) 
            if( citys[i].exceptp<1){ 
                citys[i].isSelected++; 
                needSelecte --; 
            } 
        double[] temp = new double[popSize]; 
        for (int i = 0; i < popSize; i++) { 
//          temp[i] = citys[i].exceptp - (int) citys[i].exceptp; 
//          temp[i] *= 10; 
            temp[i] = citys[i].exceptp*10; 
        } 
        int j = 0; 
        while (needSelecte != 0) { 
            for (int i = 0; i < popSize; i++) { 
                if ((int) temp[i] == j) { 
                    citys[i].isSelected++; 
                    needSelecte--; 
                    if (needSelecte == 0) 
                        break; 
                } 
            } 
            j++; 
        } 
          
    } 
      
    /** 
     * @param x 
     * @return 判断一个数是否是素数的函数 
     */
    private boolean isSushu( int x){ 
           if(x<2) return false; 
           for(int i=2;i<=x/2;i++) 
           if(x%i==0&&x!=2) return false; 
  
           return true; 
        } 
      
    /** 
     * @param x 数组 
     * @return x数组的值是否全部相等,相等则表示x.length代的最优结果相同,则算法结束 
     */
    private boolean isSame(long[] x){ 
        for( int i = 0; i< x.length -1; i++) 
            if(x[i] !=x[i+1]) 
                return false; 
        return true; 
    } 
      
    /** 
     * 打印任意代最优的路径序列 
     */
    private void printBestRoute(){ 
        CalAll(); 
        long temp = citys[0].fitness; 
        int index = 0; 
        for (int i = 1; i < popSize; i++) { 
            if(citys[i].fitness<temp){ 
                temp = citys[i].fitness; 
                index = i; 
            } 
        } 
        System.out.println(); 
        System.out.println("最佳路径的序列:"); 
        for (int j = 0; j < cityNum; j++) 
        { 
            String cityEnd[]={cityName[citys[index].city[j]]}; 
            for(int m=0;m<cityEnd.length;m++) 
            { 
                System.out.print(cityEnd[m] + " "); 
            } 
        } 
          
            //System.out.print(citys[index].city[j] + cityName[citys[index].city[j]] + "  "); 
            //System.out.print(cityName[citys[index].city[j]]); 
        System.out.println(); 
    } 
      
    /** 
     * 算法执行 
     */
    public void run(){ 
        long[] result = new long[range]; 
        //result初始化为所有的数字都不相等 
        for( int i  = 0; i< range; i++) 
            result[i] = i; 
        int index = 0;       //数组中的位置 
        int num = 1;     //第num代 
        while(maxgens>0){ 
            System.out.println("-----------------  第  "+num+" 代  -------------------------"); 
            CalAll(); 
            print(); 
            pad(); 
            crossover(); 
            mutate(); 
            maxgens --; 
            long temp = citys[0].fitness; 
            for ( int i = 1; i< popSize; i++) 
                if(citys[i].fitness<temp){ 
                    temp = citys[i].fitness; 
                } 
            System.out.println("最优的解:"+temp); 
            result[index] = temp; 
            if(isSame(result)) 
                break; 
            index++; 
            if(index==range) 
                index = 0; 
            num++; 
        } 
        printBestRoute(); 
    } 
      
    /** 
     * @param a 开始时间 
     * @param b   结束时间 
     */
    public void CalTime(Calendar a,Calendar b){ 
        long x = b.getTimeInMillis() - a.getTimeInMillis(); 
        long y = x/1000; 
        x = x - 1000*y; 
        System.out.println("算法执行时间:"+y+"."+x+" 秒"); 
    } 
      
    /** 
     *    程序入口  
     */
    public static void main(String[] args) { 
          
        Calendar a = Calendar.getInstance(); //开始时间 
        Tsp tsp = new Tsp(); 
        tsp.run(); 
        Calendar b = Calendar.getInstance(); //结束时间 
        tsp.CalTime(a, b); 
          
    } 
}

你可能感兴趣的:(数学求解之遗传算法)