- DirectX12(D3D12)基础教程 二“纹理”
指掀涛澜天下惊
d3d12c++vc3dc++visualstudiowindows开发语言
什么是纹理,简单理解叫贴图,比如现在一张1920X1080图片要显示在1920X1080的窗口上,那么图片像素与窗口一一对应简单的复制粘贴。如果图片大小与目标大小不一样时通过某种算法实现显示目标窗口上,这就叫纹理过滤。纹理坐标范围0到1,原点在左下角使用d3d12窗口显示一张图片,如果用gdi+现实简单多了,调用一个函数就可以解决。1.读取图片信息大小,像素深度BPP,d3d12所要的格式,数据。
- 深入了解React Fiber:React的新架构
糖糖老师436
react.js架构前端
ReactFiber是React16引入的一种全新的协调引擎,旨在解决旧版React在性能和灵活性方面的不足。本文将深入探讨ReactFiber的工作原理、其背后的设计理念,以及它如何提升应用的性能。我们会用通俗易懂的语言,帮助你轻松理解这个复杂的概念,并通过代码示例来进一步解释。1.什么是ReactFiber?ReactFiber是对React核心算法的一次彻底重构。旧版的React使用的是“S
- C++的Find算法用法,
-Mr_X-
c++算法
在C++中,可以使用std::map统计值出现次数为2的键。具体步骤如下:遍历std::map,找出所有值为2的键。使用条件语句检查每个值,符合条件时记录对应键。#include#include#includeintmain(){//创建一个std::map并插入数据std::mapdata={{1,2},{2,3},{3,2},{4,1},{5,2}};//用于存储值为2的键std::vecto
- DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?
爱吃青菜的大力水手
人工智能
DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?正面影响分析算力需求与成本大幅降低DeepSeek通过算法优化(如稀疏计算、知识蒸馏)和模型压缩技术,将云端训练算力需求降至传统大模型的35%,车端推理芯片需求减少至65%。例如,某车企使用高通8650平台后,智驾系统成本显著下降。这种优化使得中小企业能以更低成本部署AI,甚至支持本地化私有化部署(如金融行业案例),同时减少对英伟达高
- DeepSeek:突破闭源封锁,引领大模型新时代
fanstinmsl
算法语言模型
近年来,人工智能领域蓬勃发展,大模型作为其中的核心技术,其重要性不言而喻。然而,大模型的训练和部署往往面临着硬件依赖性强、成本高昂、效率低下等挑战。DeepSeek的出现,为解决这些问题提供了全新的思路和方案。DeepSeek的核心优势:1.减少硬件依赖:DeepSeek通过算法优化和架构创新,降低了对高性能硬件的依赖,使得大模型的训练和部署可以在更广泛的硬件平台上进行,极大地降低了应用门槛。**
- ctf网络安全大赛官网赛题 ctf网络安全大赛规则
网络安全-老纪
web安全安全网络
CTF(CaptureTheFlag,夺旗赛)起源于1996年DEFCON全球黑客大会,是网络安全爱好者之间的竞技游戏。CTF竞赛模式具体分为以下三类:一、解题模式(Jeopardy)在解题模式CTF赛制中,参赛队伍可以通过互联网或者现场网络参与,这种模式的CTF竞赛与ACM编程竞赛、信息学奥赛比较类似,以解决网络安全技术挑战题目的分值和时间来排名,通常用于在线选拔赛。题目主要包含逆向、漏洞挖掘与
- 【Qt】13 计算器核心解析算法(中)
c++
一、中缀转后缀中缀表达式转后缀表达式的过程类似编译过程四则运算符表达式中的括号必须匹配根据运算符优先级进行转化转换后的表达式没有括号转换后可以顺序的计算出最终结果转换过程:当前元素e为数字:输出当前元素e为运算符:1.与栈顶运算符进行优先级比较2.小于等于:将栈顶元素输出,转13.大于:将当前元素e入栈当前元素e为左括号,入栈当前元素e为右括号:1.弹出栈顶元素并输出,直至栈顶元素为左括号2.将栈
- python阈值计算_基于Python的阈值分割算法实现(二)
weixin_39872222
python阈值计算
引言前文我们讨论了关于实现OTSU算法的问题,该算法主要是针对于特征值阈值的确定,这个值可以用于论文讨论和说明。但实际情况中,我们需要对图像进行各种滤波,预处理,那么此时我们可能需要一种带坐标和投影的分割结果,本文就将带大家实现对图像进行阈值分割后进行结果的输出。本文代码共包含了四种不同的分割算法,分别是三角阈值分割法、Riddler-Calvard分割法、自适应局部均值分割法、自适应局部高斯分割
- python 语音转文本中文——DeepSpeech
drebander
python开发语言DeepSpeech
DeepSpeech简介与音频转文本实践DeepSpeech是由Mozilla开发的一种开源语音识别引擎,基于深度学习技术,采用端到端架构,可以高效地将语音转换为文本。其核心算法受BaiduDeepSpeech论文启发,使用RecurrentNeuralNetwork(RNN)处理语音数据。一、DeepSpeech的原理1.核心组件声学模型:将语音波形转换为概率分布表示。语言模型:对语音识别结果进
- BP算法的python实现 + 男女生分类器
乐宝不是酒
机器学习机器学习神经网络算法
模式识别课上学习了BP算法,并用BP算法实现了男女生分类器,之前因为时间匆忙只是简单记录了一下代码实现,现在重温一下发现代码中还是存在着一些问题,于是修改了一下Bug,也当做是复习吧。本文完整代码和数据集可以到这里:BP算法的python实现获得。BP算法是神经网络中十分经典的算法之一,要把它解释清楚实在需要很多时间,我只想重点讲一下基于BP算法的男女生分类器python实现,理论方面推荐看知乎大
- 基于Weber和simulink的齿轮啮合刚度计算
�时过境迁,物是人非
matlab
使用weber算法计算齿轮啮合刚度,具有重大意义。资源文件列表基于Weber和simulink的齿轮啮合刚度计算/testwebgear20191020.m , 46533
- 点云从入门到精通技术详解100篇-基于点云与图像纹理的 道路识别(续)
格图素书
计算机视觉人工智能
目录3.1.2图像滤波去噪3.2道路纹理特征提取3.3基于超像素分割的图像特征表达3.3.1SLIC算法3.3.2改进SLIC算法的超像素特征图获取3.4基于改进区域生长算法的道路区域分割3.4.1种子点的选择3.4.2生长准则3.4.3道路区域后处理3.5实验结果分析4基于激光雷达点云的道路识别4.1点云预处理4.1.1点云数据解析4.1.2点云数据筛选4.1.3点云坐标转换4.2基于雷达图像的
- [C++]使用纯opencv部署yolov12目标检测onnx模型
FL1623863129
深度学习c++opencvYOLO
yolov12官方框架:sunsmarterjie/yolov12【算法介绍】在C++中使用纯OpenCV部署YOLOv12进行目标检测是一项具有挑战性的任务,因为YOLOv12通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN
- 【算法】贪心算法
希冀123
算法算法贪心算法
贪心算法1.贪心介绍2.贪心本质3.最优装载问题(1)问题分析(2)算法实现(3)算法分析1.贪心介绍贪心算法总是做出当前最好的选择,期望通过局部最优选择得到全局最优的解决方案。但贪心不是从整体最优来考虑的,一旦做出选择,不会再改变,只能达到某种意义上的局部最优。简记为:想要当下最好的,但会导致目光短浅2.贪心本质应用情景:当出现两个特性——贪心选择性质和最优子结构性质时可用。(1)贪心选择性质:
- 时序差分(TD)算法:
waski
强化学习人工智能机器学习
TD算法:小猴子每走1步,看一下这个路口的V值,还有获得的奖励r;回到原来的路口,把刚刚看到的V值和奖励r进行运算,估算出V值。和蒙地卡罗(MC)不同:TD算法只需要走N步。就可以开始回溯更新。和蒙地卡罗(MC)一样:小猴需要先走N步,每经过一个状态,把奖励记录下来。然后开始回溯。那么,状态的V值怎么算呢?其实和蒙地卡罗一样,我们就假设N步之后,就到达了最终状态了。假设“最终状态”上我们之前没有走
- python-leetcode 43.二叉搜索树中第K小的元素
SylviaW08
leetcode算法职场和发展
题目:给定一个二叉搜索树的根节点root,和一个整数k,请设计算法,查找其中第K小的元素(从1开始计数)方法一:中序遍历叉搜索树具有如下性质:结点的左子树只包含小于当前结点的数。结点的右子树只包含大于当前结点的数。所有左子树和右子树自身必须也是二叉搜索树二叉树的中序遍历即按照访问左子树——根结点——右子树的方式遍历二叉树;在访问其左子树和右子树时,我们也按照同样的方式遍历;直到遍历完整棵树。因为二
- 力扣hot100——分割回文子串 + 回溯算法总结(算法代码模板)
01_
力扣hot100算法leetcode回溯算法
给你一个字符串s,请你将s分割成一些子串,使每个子串都是回文串。返回s所有可能的分割方案。解法思路:切割一个a之后,在ab中再去切割第二段.....classSolution{public:vector>res;//最终结果vectorpath;//当前结果vector>partition(strings){backtracking(s,0);returnres;}voidbacktracking
- 支持向量机 (Support Vector Machine, SVM)
数维学长986
支持向量机算法机器学习
支持向量机(SupportVectorMachine,SVM)支持向量机(SVM)是一种广泛应用于分类、回归分析以及异常检测的监督学习算法。它基于结构风险最小化(StructuralRiskMinimization,SRM)原则,通过寻找一个最优超平面来实现数据的分类。SVM不仅可以处理线性可分问题,也能够通过核技巧(KernelTrick)处理非线性可分问题。1.基本概念超平面:在特征空间中,S
- 计算机二级公共基础知识考点整理,超全面,超全面
zhishitu7
数据结构算法java
第一章数据结构与算法经过对部分考生的调查以及对近年真题的总结分析,笔试部分经常考查的是算法复杂度、数据结构的概念、栈、二叉树的遍历、二分法查找,读者应对此部分进行重点学习。详细重点学习知识点:1.算法的概念、算法时间复杂度及空间复杂度的概念2.数据结构的定义、数据逻辑结构及物理结构的定义3.栈的定义及其运算、线性链表的存储方式4.树与二叉树的概念、二叉树的基本性质、完全二叉树的概念、二叉树的遍历5
- 共识算法 —— DPoS
yezhijing
区块链共识算法区块链算法
定义2014年4月由Bitshares的首席开发者DanLarimer提出。DPoS的全称是DelegatedProofofStake代理权益证明,它是由持有币的人选出一定数量(一般是101个,不一定,由项目方决定,不能少于11个)的代表节点(受托人)来运营网络(类似于人民群众选举出来的人大代表,由人大代表来维护人民的权益)。受托节点有记账的权力(也就是有生成区块、验证交易、区块上链的权限),但是
- 【matlab数学建模项目】matlab实现HSV空间的森林火灾监测系统——森林火灾监测系统
阿里matlab建模师
matlab精品科研项目数学建模matlab开发语言科研项目算法美赛全国大学生数学建模竞赛
MATLAB实现HSV空间森林火灾监测系统1、项目下载:本项目完整讲解和全套实现源码见下资源,有需要的朋友可以点击进行下载说明文档(点击下载)全套源码+学术论文基于MATLAB的HSV空间森林火灾监测系统的技术实现与应用-机器学习-HSV色彩空间-图像处理-森林火灾监测-matlab更多阿里matlab精品数学建模项目可点击下方文字链接直达查看:matlab精品数学建模项目合集(算法+源码+论文)
- 力扣每日一题【算法学习day.130】
南宫生
算法leetcode学习算法java
前言###我做这类文章一个重要的目的还是记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非常非常高滴!!!习题1.奇偶数位题目链接:2595.奇偶位数-力扣(LeetCode)题面:分析:从右向左遍历每位即可代码:classSolution{publicint[]evenOddBit(intn){int[]ans=newint[2];intind
- 力扣每日一题【算法学习day.133】
南宫生
算法leetcode学习算法java
前言###我做这类文章一个重要的目的还是记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非常非常高滴!!!习题1.设计跳表题目链接:1206.设计跳表-力扣(LeetCode)题面:代码:classSkiplist{int[]arr;publicSkiplist(){arr=newint[20005];}publicbooleansearch(i
- 【算法 | Python】高斯消元法
weixin_43964993
算法python算法pythonnumpy
程序来源:GaussianEliminationArithmeticAnalysis原理说明源代码代码说明原理说明高斯消元法(GaussElimination)【超详解&模板】高斯消元法-百度百科源代码"""Gaussianeliminationmethodforsolvingasystemoflinearequations.Gaussianelimination-https://en.wikip
- AI专业知识库 | 创建
黎智程
1024程序员节
一、前言最近ChatGPT非常受欢迎,尤其是在编写代码方面,我每天都在使用。随着时间的增长,我开始对其原理产生了一些兴趣。虽然我无法完全理解这些AI大模型的算法和模型,但我认为可以研究一下其中涉及到大模型以外的专业知识、该如何进行回答、专业领域的专属知识大模型其实是无法回答的,那么我们就需要使用一个专业知识库来辅助AI进行对话操作。举例创建幼教师角色,需要专业知识来辅导幼儿,且需要符合正确的社会主
- 蚁群算法(Ant Colony Optimization, ACO)
QRSN
运筹优化算法python人工智能
蚁群算法(AntColonyOptimization,ACO)目录算法起源核心思想数学模型算法流程参数调优改进变体应用场景优缺点分析代码框架最新研究一、算法起源1.1生物学基础蚂蚁觅食行为:自然界蚂蚁通过释放**信息素(Pheromone)**标记路径,较短路径因信息素累积更快,吸引更多蚂蚁选择,形成正反馈。自组织特性:单个蚂蚁行为简单,群体涌现出智能协作能力。1.2提出与发展1992年:Marc
- 领航者-跟随者编队算法 定义+特性+原理+公式+Python示例代码(带详细注释)
m0_74822999
面试学习路线阿里巴巴算法python开发语言
文章目录引言定义特性基本原理和公式推导基本原理公式推导运动模型领航者的控制跟随者的控制示例推导实现步骤和代码实现实现步骤Python代码实现(带详细注释)代码运行结果代码和图表说明应用案例优化和挑战优化挑战结论引言在现代科技的发展中,无人机和自动驾驶汽车已经变得越来越普遍。这些技术依赖于多智能体系统(MAS),即多个智能设备一起协作完成任务。在这些系统中,领航者-跟随者编队算法是非常重要的一部分。
- 目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
紫雾凌寒
AI炼金厂#机器学习算法#深度学习深度学习计算机视觉python目标检测YOLOcnn人工智能
一、引言在计算机视觉领域中,目标检测是一项至关重要的任务,它旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。目标检测技术的应用广泛,涵盖了自动驾驶、安防监控、智能机器人、图像编辑等多个领域。随着深度学习技术的飞速发展,目标检测算法也取得了巨大的突破,从最初的R-CNN到如今的YOLOv11,每一次的技术演进都为该领域带来了新的活力和可能性。回顾目标检测的发展历程,R-CNN作为第一个将深度
- 【学术投稿-第四届算法、微芯片与网络应用国际会议(AMNA 2025】算法,微芯片与网络应用的交流
禁小默
算法
重要信息时间:2025年3月7-9日地点:中国-扬州官网:ic-amna.net(点击了解参会投稿等)名词介绍算法、微芯片和网络应用是现代科技的重要组成部分,它们在推动数字化进程、提升信息处理能力和促进智能化应用方面扮演着关键角色。它们之间紧密联系,相互依存,助力我们进入了一个全新的信息化时代。以下是对三者的概述,以及它们之间的关系和应用。1.算法算法是处理特定问题的一系列明确的步骤或规则。算法是
- PTA 数据结构与算法题目集(中文)
天天向上的菜鸡杰!!
数据结构与算法题目集(中文)算法数据结构
一:数据结构与算法题目(中文版)7-2一元多项式的乘法与加法运算(20分)7-3树的同构(25分)7-4是否同一棵二叉搜索树(25分)7-6列出连通集(25分)(详解)7-7六度空间(30分)7-8哈利·波特的考试(25分)7-14电话聊天狂人(25分)7-15QQ帐户的申请与登陆(25分)7-16一元多项式求导(20分)7-17汉诺塔的非递归实现(25分)7-19求链式线性表的倒数第K项(20分
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla