kmeans聚类练习

聚类算法,不是分类算法。

分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。

聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。

这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。

所有资料中还是Andrew Ng介绍的明白。

首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。

初始化k个随机数据u1,u2,...,uk。这些xn和uk都是向量。

根据下面两个公式迭代就能求出最终所有的u,这些u就是最终所有类的中心位置。

公式一:


意思就是求出所有数据和初始化的随机数据的距离,然后找出距离每个初始数据最近的数据。

公式二:

kmeans聚类练习_第1张图片

意思就是求出所有和这个初始数据最近原始数据的距离的均值。

然后不断迭代两个公式,直到所有的u都不怎么变化了,就算完成了。


kmeans实例一:

%随机获取150个点
X = [randn(50,2)+ones(50,2);randn(50,2)-ones(50,2);randn(50,2)+[ones(50,1),-ones(50,1)]];
 
opts = statset('Display','final');
 
%调用Kmeans函数
%X N*P的数据矩阵
%Idx N*1的向量,存储的是每个点的聚类标号
%Ctrs K*P的矩阵,存储的是K个聚类质心位置
%SumD 1*K的和向量,存储的是类间所有点与该类质心点距离之和
%D N*K的矩阵,存储的是每个点与所有质心的距离;
 
[Idx,Ctrs,SumD,D] = kmeans(X,3,'Replicates',3,'Options',opts);
 
%画出聚类为1的点。X(Idx==1,1),为第一类的样本的第一个坐标;X(Idx==1,2)为第二类的样本的第二个坐标
plot(X(Idx==1,1),X(Idx==1,2),'r.','MarkerSize',14)
hold on
plot(X(Idx==2,1),X(Idx==2,2),'b.','MarkerSize',14)
hold on
plot(X(Idx==3,1),X(Idx==3,2),'g.','MarkerSize',14)
 
%绘出聚类中心点,kx表示是圆形
plot(Ctrs(:,1),Ctrs(:,2),'kx','MarkerSize',14,'LineWidth',4)
plot(Ctrs(:,1),Ctrs(:,2),'kx','MarkerSize',14,'LineWidth',4)
plot(Ctrs(:,1),Ctrs(:,2),'kx','MarkerSize',14,'LineWidth',4)
 
legend('Cluster 1','Cluster 2','Cluster 3','Centroids','Location','NW')
 
Ctrs
SumD

kmeans聚类练习_第2张图片

实例二:

main.m

%第一类数据
mu1=[0 0 0];  %均值
S1=[0.3 0 0;0 0.35 0;0 0 0.3];  %协方差
data1=mvnrnd(mu1,S1,100);   %产生高斯分布数据


%%第二类数据
mu2=[1.25 1.25 1.25];
S2=[0.3 0 0;0 0.35 0;0 0 0.3];
data2=mvnrnd(mu2,S2,100);


%第三个类数据
mu3=[-1.25 1.25 -1.25];
S3=[0.3 0 0;0 0.35 0;0 0 0.3];
data3=mvnrnd(mu3,S3,100);


%显示数据
plot3(data1(:,1),data1(:,2),data1(:,3),'+');
hold on;
plot3(data2(:,1),data2(:,2),data2(:,3),'r+');
plot3(data3(:,1),data3(:,2),data3(:,3),'g+');
grid on;


%三类数据合成一个不带标号的数据类
data=[data1;data2;data3];   %这里的data是不带标号的


%k-means聚类
[u re]=kmeans(data,3);  %最后产生带标号的数据,标号在所有数据的最后,意思就是数据再加一维度
[m n]=size(u);


%最后显示聚类后的数据
figure;
hold on;
for i=1:m 


 if u(i,1)==1   
         plot3(data(i,1),data(i,2),data(i,3),'ro'); 
    elseif u(i,1)==2
         plot3(data(i,1),data(i,2),data(i,3),'go'); 
    else 
         plot3(data(i,1),data(i,2),data(i,3),'bo'); 
   


    end
end
grid on;


KMeans.m

%N是数据一共分多少类
%data是输入的不带分类标号的数据
%u是每一类的中心   re
%re是返回的带分类标号的数据  u
function [u re]=KMeans(data,N)   
    [m n]=size(data);   %m是数据个数,n是数据维数
    ma=zeros(n);        %每一维最大的数
    mi=zeros(n);        %每一维最小的数
    u=zeros(N,n);       %随机初始化,最终迭代到每一类的中心位置
    for i=1:n
       ma(i)=max(data(:,i));    %每一维最大的数
       mi(i)=min(data(:,i));    %每一维最小的数
       for j=1:N
            u(j,i)=ma(i)+(mi(i)-ma(i))*rand();  %随机初始化,不过还是在每一维[min max]中初始化好些
       end      
    end
   
    while 1
        pre_u=u;            %上一次求得的中心位置
        for i=1:N
            tmp{i}=[];      % 公式一中的x(i)-uj,为公式一实现做准备
            for j=1:m
                tmp{i}=[tmp{i};data(j,:)-u(i,:)];
            end
        end
        
        quan=zeros(m,N);
        for i=1:m        %公式一的实现
            c=[];
            for j=1:N
                c=[c norm(tmp{j}(i,:))];
            end
            [junk index]=min(c);
            quan(i,index)=norm(tmp{index}(i,:));           
        end
        
        for i=1:N            %公式二的实现
           for j=1:n
                u(i,j)=sum(quan(:,i).*data(:,j))/sum(quan(:,i));
           end           
        end
        
       if norm(pre_u-u)<<span style="color:rgb(128,0,128);font-family:'Courier New' !important;">0.1  %不断迭代直到位置不再变化
          break;
        end
    end
    
    re=[];
    for i=1:m
        tmp=[];
        for j=1:N
            tmp=[tmp norm(data(i,:)-u(j,:))];
        end
        [junk index]=min(tmp);
        re=[re;data(i,:) index];
    end
    
end

运行结果:

kmeans聚类练习_第3张图片


kmeans聚类练习_第4张图片



你可能感兴趣的:(kmeans聚类练习)