【POJ 3468】A Simple Problem with Integers

A Simple Problem with Integers
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 68616   Accepted: 21153
Case Time Limit: 2000MS

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.

Source

POJ Monthly--2007.11.25, Yang Yi

树状数组维护带修改的区间和~


首先这道题用线段树打标记很好做,但是树状数组可以更快的实现~


树状数组本身是不支持区间修改的,那么我们怎么办呢?


s[i]表示最开始的前缀和。


数组de[i],表示i-n的所有数都加上de[i]。


当把区间l-r都加上c的时候,de[l]+=c,de[r+1]-=c


我们看看怎么计算修改后的前缀和(前x个数)

  原始和+修改和

=s[x]+del[1]*x+del[2]*(x-1)+...+del[x]*1


=s[x]+sigma(del[i]*(x-i+1))


=s[x]+sigma((1+x)*del[i]-i*del[i])    (1<=i<=x)


=s[x]+(1+x)*sigma(del[i])-sigma(i*del[i])   (1<=i<=x)


那么我们可以用两个树状数组:

d维护del[i]的前缀和;

d[i]维护del[i]*i的前缀和。


然后求l-r的区间和的时候,用前缀和相减就可以了~


#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#define LL long long
#define M 100000+5
using namespace std;
int n,T;
LL d[M],di[M],s[M];
int lowbit(int x)
{
	return x&(-x);
}
void Update1(int x,LL k)
{
	for (int i=x;i<=n;i+=lowbit(i))
		d[i]+=k;
}
void Update2(int x,LL k)
{
	for (int i=x;i<=n;i+=lowbit(i))
		di[i]+=k;
}
LL Getsum1(int x)
{
	LL ans=0;
	for (int i=x;i;i-=lowbit(i))
		ans+=d[i];
	return ans;
}
LL Getsum2(int x)
{
	LL ans=0;
	for (int i=x;i;i-=lowbit(i))
		ans+=di[i];
	return ans;
}
int main()
{
	scanf("%d%d",&n,&T);
	s[0]=0;
	LL x;
	for (int i=1;i<=n;i++)
		scanf("%I64d",&x),s[i]=s[i-1]+x;
	while (T--)
	{
		char ch[3];
		int l,r;
		LL c;
		scanf("%s",ch);
		scanf("%d%d",&l,&r);
		if (ch[0]=='C')
		{
			scanf("%I64d",&c);
			Update1(l,c);
			Update1(r+1,-c);
			Update2(l,c*(LL)l);
			Update2(r+1,(-c)*(LL)(r+1));
		}
		else
		{
			LL ans=0;
			ans=s[r]-s[l-1];
			ans+=(Getsum1(r)*(LL)(r+1)-Getsum2(r));
			ans-=(Getsum1(l-1)*(LL)l-Getsum2(l-1));
			printf("%I64d\n",ans);
		}
	}
	return 0;
}

感悟:

1.WA是因为getsum1/2搞反。。POJ要用I64d

你可能感兴趣的:(poj,树状数组,OI)