http://poj.org/problem?id=3685
Time Limit: 6000MS | Memory Limit: 65536K | |
Total Submissions: 5329 | Accepted: 1452 |
Description
Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i2 + 100000 × i + j2 - 100000 × j + i × j, you are to find the M-th smallest element in the matrix.
Input
The first line of input is the number of test case.
For each test case there is only one line contains two integers, N(1 ≤ N ≤ 50,000) and M(1 ≤ M ≤ N × N). There is a blank line before each test case.
Output
For each test case output the answer on a single line.
Sample Input
12
1 1
2 1
2 2
2 3
2 4
3 1
3 2
3 8
3 9
5 1
5 25
5 10
Sample Output
3
-99993
3
12
100007
-199987
-99993
100019
200013
-399969
400031
-99939
题目大意:题目意思很简单。这个题目乍一看,先打n为比较小例如8的表,会觉得很有规律,
大小规律是从右上往左下依次增大,但是这个规律到n为5*10^4就不一定保持了。
解题思路:有一个规律是看得见的,j不变i增大函数值也在增大。很多人可能跟我一样,无从入手,
既不知道要跟谁比较,跟不知道哪个值是我们所求位置的值。那么我们可以随便假设一
个值ans(在这ans=(-1e12+1e12)/2),用第二层二分求出其值的大小位置为X,再跟m比
较,就这样,然一个值的大小位置X不断逼近m。我处理得到最后的结果个数为m+1的最
小值,所以最后要mid-1即为答案。
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; typedef long long LL; const LL maxnn=100000; LL n,m; LL comput(LL i,LL j) { return i*i+maxnn*i+j*j-maxnn*j+i*j; } LL two(LL x) { LL ans=0,left,right,mid; for(int i=1;i<=n;i++) { left=1,right=n+1; mid=(left+right)>>1; while(left<right) { if(comput(mid,i)>=x) right=mid; else left=mid+1; mid=(left+right)>>1; } ans +=mid-1; } return ans; } int main() { LL T; scanf("%d",&T); while(T--) { scanf("%lld %lld",&n,&m); LL left=-1e12,right=1e12; LL mid=(left+right)>>1; while(left<right) { if(two(mid)>=m) right=mid; else left=mid+1; mid=(left+right)>>1; } printf("%lld\n",mid-1); } return 0; }