题目大意:求两环的相交面积。
容斥原理,两个大圆面积之交集 - 两个大圆与另一个小圆面积之交集 + 两小圆面积之交集。直接拿模板。
#include<iostream> #include<math.h> #include<iomanip> using namespace std; const double pai=acos(-1.0); class Circle { public: double x,y,r; Circle(double x1,double Y1,double R):x(x1),y(Y1),r(R){} double intersection(Circle b) { double dis=sqrt( (x-b.x)*(x-b.x)+(y-b.y)*(y-b.y) ); if(dis>=r+b.r) return 0; double minr=r<b.r?r:b.r; double maxr=r>b.r?r:b.r; if(dis<=maxr-minr) return pai*minr*minr; double ang1=acos( (dis*dis+r*r-b.r*b.r)/(2*dis*r) ); double ang2=acos( (dis*dis+b.r*b.r-r*r)/(2*dis*b.r) ); double ans=0; ans-=dis*r*sin(ang1)*0.5*2; ans+=ang1/(pai*2)*pai*r*r*2+ang2/(pai*2)*pai*b.r*b.r*2; return ans; } }; int main() { int times; cin>>times; for(int time=1;time<=times;++time) { double r1,r2,x1,x2,y1,y2; cin>>r1>>r2>>x1>>y1>>x2>>y2; Circle a(x1,y1,r2); Circle A(x1,y1,r1); Circle B(x2,y2,r1); Circle b(x2,y2,r2); cout<<"Case #"<<time<<": "; cout<<fixed<<setprecision(6)<< A.intersection(B)-A.intersection(b)-B.intersection(a)+a.intersection(b)<<endl; } }