[转]__attribute__机制介绍

1. __attribute__

GNU C的一大特色(却不被初学者所知)就是__attribute__机制。

__attribute__可以设置函数属性(Function Attribute)、变量属性(Variable Attribute)和类型属性(Type Attribute)

__attribute__前后都有两个下划线,并且后面会紧跟一对原括弧,括弧里面是相应的__attribute__参数

__attribute__语法格式为:

__attribute__ ( ( attribute-list ) )

函数属性(Function Attribute),函数属性可以帮助开发者把一些特性添加到函数声明中,从而可以使编译器在错误检查方面的功能更强大。

__attribute__机制也很容易同非GNU应用程序做到兼容。

GNU CC需要使用 –Wall,这是控制警告信息的一个很好的方式。下面介绍几个常见的属性参数。

 

2. format

该属性可以使编译器检查函数声明和函数实际调用参数之间的格式化字符串是否匹配。它可以给被声明的函数加上类似printf或者scanf的特征,该功能十分有用,尤其是处理一些很难发现的bug

format的语法格式为:

format ( archetype,  string-index,  first-to-check )

format属性告诉编译器,按照printfscanfstrftimestrfmon的参数表格式规则对该函数的参数进行检查。archetype:指定是哪种风格;

string-index:指定传入函数的第几个参数是格式化字符串;

first-to-check:指定从函数的第几个参数开始按上述规则进行检查。

具体使用格式如下:

__attribute__( ( format( printfmn ) ) )

__attribute__( ( format( scanfmn ) ) )

其中参数mn的含义为:

m第几个参数为格式化字符串(format string);

n参数集合中的第一个,即参数“…”里的第一个参数在函数参数总数排在第几

注意,有时函数参数里还有隐身的呢,后面会提到;

在使用上,__attribute__((format(printf,m,n)))是常用的,而另一种却很少见到。

下面举例说明,其中myprint为自己定义的一个带有可变参数的函数,其功能类似于printf

//m=1n=2

extern void  myprint( const char *format… ) __attribute__( ( format( printf12 ) ) );

//m=2n=3

extern void  myprint( int lconst char *format... ) __attribute__( ( format( printf23 ) ) );

需要特别注意的是,如果myprint是一个函数的成员函数,那么mn的值可有点悬乎了,例如:

//m=3n=4

extern void  myprint( int lconst char *format... ) __attribute__( ( format( printf34 ) ) );

其原因是,类成员函数的第一个参数实际上一个隐身this指针。(有点C++基础的都知道点this指针,不知道你在这里还知道吗?)
这里给出测试用例:attribute.c,代码如下:

extern void myprint(const char *format,...) __attribute__((format(printf,1,2)));

void test()

{

         myprint("i=%d/n",6);

         myprint("i=%s/n",6);

         myprint("i=%s/n","abc");

        myprint("%s,%d,%d/n",1,2);

}

运行$gcc –Wall –c attribute.c attribute后,输出结果为:

attribute.c: In function `test':

attribute.c:7: warning: format argument is not a pointer (arg 2)

attribute.c:9: warning: format argument is not a pointer (arg 2)

attribute.c:9: warning: too few arguments for format

如果在attribute.c中的函数声明去掉__attribute__((format(printf,1,2))),再重新编译,

既运行$gcc –Wall –c attribute.c attribute后,则并不会输出任何警告信息。

注意,默认情况下,编译器是能识别类似printf标准库函数。

 

3. noreturn

该属性通知编译器函数从不返回值

当遇到函数需要返回值却还没运行到返回值处就已退出来的情况,该属性可以避免出现错误信息。C库函数中的abort()和exit()的声明格式就采用了这种格式

extern void  exit(int)   __attribute__( ( noreturn ) );

extern void  abort(void)  __attribute__( ( noreturn ) );

为了方便理解,大家可以参考如下的例子:

//name: noreturn.c    ;测试__attribute__((noreturn))

extern void  myexit();

int  test( int  n )

{

    if ( n > 0 )

    {

            myexit();

            /*程序不可能到达这里 */

    }

    else

    {

           return 0;

    }

}

编译$gcc –Wall –c noreturn.c  显示的输出信息为:

noreturn.c: In function `test':

noreturn.c:12: warning: control reaches end of non-void function

警告信息也很好理解,因为你定义了一个有返回值的函数test却有可能没有返回值,程序当然不知道怎么办了!加上__attribute__((noreturn))则可以很好的处理类似这种问题。把extern void myexit();修改为:

extern void  myexit() __attribute__((noreturn));

之后,编译不会再出现警告信息。

 

4. const

该属性只能用于带有数值类型参数的函数上,当重复调用带有数值参数的函数时,由于返回值是相同的。所以此时编译器可以进行优化处理,除第一次需要运算外, 其它只需要返回第一次的结果。

该属性主要适用于没有静态状态(static state)和副作用的一些函数,并且返回值仅仅依赖输入的参数。为了说明问题,下面举个非常糟糕的例子,该例子将重复调用一个带有相同参数值的函数,具体如下:

extern int  square( int  n ) __attribute__ ( (const) );

for (i = 0; i < 100; i++ )                 

{      

       total += square (5) + i;            

}

添加__attribute__((const))声明,编译器只调用了函数一次,以后只是直接得到了相同的一个返回值。

事实上,const参数不能用在带有指针类型参数的函数中,因为该属性不但影响函数的参数值,同样也影响到了参数指向的数据,它可能会对代码本身产生严重甚至是不可恢复的严重后果。并且,带有该属性的函数不能有任何副作用或者是静态的状态,类似getchar()或time()的函数是不适合使用该属性。

 

5. finstrument-functions

该参数可以使程序在编译时,在函数的入口和出口处生成instrumentation调用。恰好在函数入口之后并恰好在函数出口之前,将使用当前函数的地址和调用地址来调用下面的profiling函数。(在一些平台上,__builtin_return_address不能在超过当前函数范围之外正常工作,所以调用地址信息可能对profiling函数是无效的)

void  __cyg_profile_func_enter( void  *this_fnvoid  *call_site );

void  __cyg_profile_func_exit( void  *this_fnvoid  *call_site );

其中,第一个参数this_fn是当前函数的起始地址,可在符号表中找到;第二个参数call_site是调用处地址。

 

6. instrumentation

也可用于在其它函数中展开的内联函数。从概念上来说,profiling调用将指出在哪里进入和退出内联函数。这就意味着这种函数必须具有可寻址形式。如果函数包含内联,而所有使用到该函数的程序都要把该内联展开,这会额外地增加代码长度。如果要在C代码中使用extern inline声明,必须提供这种函数的可寻址形式。
可对函数指定no_instrument_function属性,在这种情况下不会进行 instrumentation操作。例如,可以在以下情况下使用no_instrument_function属性:上面列出的profiling函数、高优先级的中断例程以及任何不能保证profiling正常调用的函数。

no_instrument_function

如果使用了-finstrument-functions,将在绝大多数用户编译的函数的入口和出口点调用profiling函数。使用该属性,将不进行instrument操作。

 

7. constructor/destructor

若函数被设定为constructor属性,则该函数会在main()函数执行之前被自动的执行。类似的,若函数被设定为destructor属性,则该函数会在main()函数执行之后或者exit()被调用后被自动的执行。拥有此类属性的函数经常隐式的用在程序的初始化数据方面,这两个属性还没有在面向对象C中实现。

 

8. 同时使用多个属性

可以在同一个函数声明里使用多个__attribute__,并且实际应用中这种情况是十分常见的。使用方式上,你可以选择两个单独的__attribute__,或者把它们写在一起,可以参考下面的例子:

extern void  die(const char *format ...)   __attribute__( (noreturn))   __attribute__((format(printf, 1, 2)) );

或者写成

extern void  die(const char *format...)    __attribute__( (noreturn,  format(printf, 1, 2)) );

如果带有该属性的自定义函数追加到库的头文件里,那么所以调用该函数的程序都要做相应的检查。

 

9. 和非GNU编译器的兼容性

__attribute__设计的非常巧妙,很容易作到和其它编译器保持兼容。也就是说,如果工作在其它的非GNU编译器上,可以很容易的忽略该属性。即使__attribute__使用了多个参数,也可以很容易的使用一对圆括弧进行处理,例如:

 /* 如果使用的是非GNU C,那么就忽略__attribute__ */

#ifndef __GNUC__

      #define     __attribute__(x)     /* NOTHING * /

#endif

需要说明的是,__attribute__适用于函数的声明而不是函数的定义。所以,当需要使用该属性的函数时,必须在同一个文件里进行声明,例如:

/*函数声明 */

void  die( const char *format ... ) __attribute__( (noreturn) )   __attribute__( ( format(printf12) ) );

void  die( const char *format... )

{   /*函数定义 */  }

更多属性参考:http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Function-Attributes.html

 

10. 变量属性(Variable Attributes

关键字__attribute__也可以对变量(variable)或结构体成员(structure field)进行属性设置。

在使用__attribute__参数时,你也可以在参数的前后都加上“__”(两个下划线),例如,使用__aligned__而不是aligned,这样,你就可以在相应的头文件里使用它而不用关心头文件里是否有重名的宏定义。

 

11. 类型属性(Type Attribute

关键字__attribute__也可以对结构体(struct)或共用体(union)进行属性设置。

大致有六个参数值可以被设定:alignedpackedtransparent_unionunuseddeprecatedmay_alias

 

12. aligned (alignment)

该属性设定一个指定大小的对齐格式(以字节为单位),例如:

struct S { short f[3]; } __attribute__ ( ( aligned (8) ) );

typedef  int  more_aligned_int __attribute__ ( ( aligned (8) ) );

这里,如果sizeofshort)的大小为2byte),那么,S的大小就为6。取一个2的次方值,使得该值大于等于6,则该值为8,所以编译器将设置S类型的对齐方式为8字节。该声明将强制编译器确保(尽它所能)变量类型为struct S或者more-aligned-int的变量在分配空间时采用8字节对齐方式。

如上所述,你可以手动指定对齐的格式,同样,你也可以使用默认的对齐方式。例如:

struct S { short f[3]; } __attribute__ ( (aligned) );

上面,aligned后面不紧跟一个指定的数字值,编译器将依据你的目标机器情况使用最大最有益的对齐方式。

int  x __attribute__ ( (aligned (16) ) )  =  0;

编译器将以16字节(注意是字节byte不是位bit)对齐的方式分配一个变量。也可以对结构体成员变量设置该属性,例如,创建一个双字对齐的int对,可以这么写:

Struct  foo {  int  x[2] __attribute__ ( (aligned (8) ) );  };

选择针对目标机器最大的对齐方式,可以提高拷贝操作的效率。
aligned
属性使被设置的对象占用更多的空间,相反的,使用packed可以减小对象占用的空间。
需要注意的是,attribute属性的效力与你的连接器也有关,如果你的连接器最大只支持16字节对齐,那么你此时定义32字节对齐也是无济于事的。

 

13. packed

使用该属性可以使得变量或者结构体成员使用最小的对齐方式,即对变量是一字节对齐,对域(field)是位对齐。使用该属性对struct或者union类型进行定义,设定其类型的每一个变量的内存约束。当用在enum类型定义时,暗示了应该使用最小完整的类型 (it indicates that the smallest integral type should be used)。

下面的例子中,x成员变量使用了该属性,则其值将紧放置在a的后面:

struct  test

{

      char  a;

      int  x[2] __attribute__ ((packed));

};

下面的例子中,my-packed-struct类型的变量数组中的值将会紧紧的靠在一起,但内部的成员变量s不会被“pack”,如果希望内部的成员变量也被packedmy-unpacked-struct也需要使用packed进行相应的约束。

struct my_packed_struct

{

        char  c;

        int  i;

        struct  my_unpacked_struct  s;

}__attribute__ ( (__packed__) );

其它可选的属性值还可以是:cleanupcommonnocommondeprecatedmodesectionshared tls_modeltransparent_unionunusedvector_sizeweakdllimportdlexport等。

更多详细参考:http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Variable-Attributes.html#Variable-Attributes

 

14. 变量属性与类型属性举例

下面的例子中使用__attribute__属性定义了一些结构体及其变量,并给出了输出结果和对结果的分析。
程序代码为:

struct  p

{

       int a;

      char b;

       char c;

}__attribute__( ( aligned(4) ) ) pp;

struct  q

{

       int a;

       char b;

       struct n qn;

       char c;

}__attribute__( ( aligned(8) ) ) qq;

int  main()

{

       printf("sizeof(int)=%dsizeof(short)=%dsizeof(char)=%d/n"sizeof(int)sizeof(short)sizeof(char));

       printf("pp=%dqq=%d /n" sizeof(pp)sizeof(qq));

       return 0;

}

输出结果:

sizeof(int)=4sizeof(short)=2sizeof(char)=1

pp=8qq=24

分析:

sizeof(pp):

sizeof(a)+ sizeof(b)+ sizeof(c)=4+1+1=6<2^3=8= sizeof(pp)

sizeof(qq):

sizeof(a)+ sizeof(b)=4+1=5

sizeof(qn)=8;

qn是采用8字节对齐的,所以要在ab后面添3个空余字节,然后才能存储qn

4+1+3+8+1=17

因为qq采用的对齐是8字节对齐,所以qq的大小必定是8的整数倍,即qq的大小是一个比17大又是8的倍数的一个最小值,由此得到

17<2^4+8=24= sizeof(qq)

更详细的介绍见:http://gcc.gnu.org/

下面是一些便捷的连接:

GCC 4.0 Function Attributes 

GCC 4.0 Variable Attributes 

GCC 4.0 Type Attributes 

 

15. Ref

简单__attribute__介绍:http://www.unixwiz.net/techtips/gnu-c-attributes.html

详细__attribute__介绍:http://gcc.gnu.org/

 

section 部分

1. gcc的__attribute__编译属性

要了解Linux Kernel代码的分段信息,需要了解一下gcc的__attribute__的编绎属性,__attribute__主要用于改变所声明或定义的函数或 数据的特性,它有很多子项,用于改变作用对象的特性。比如对函数,noline将禁止进行内联扩展、noreturn表示没有返回值、pure表明函数除 返回值外,不会通过其它(如全局变量、指针)对函数外部产生任何影响。但这里我们比较感兴趣的是对代码段起作用子项section。

__attribute__的section子项的使用格式为:

__attribute__((section("section_name")))

其作用是将作用的函数或数据放入指定名为"section_name"输入段。

这里还要注意一下两个概念:输入段和输出段

输入段和输出段是相对于要生成最终的elf或binary时的Link过程说的,Link过程的输入大都是由源代码编绎生成的目标文件.o,那么这些.o 文件中包含的段相对link过程来说就是输入段,而Link的输出一般是可执行文件elf或库等,这些输出文件中也包含有段,这些输出文件中的段就叫做输 出段。输入段和输出段本来没有什么必然的联系,是互相独立,只是在Link过程中,Link程序会根据一定的规则(这些规则其实来源于Link Script),将不同的输入段重新组合到不同的输出段中,即使是段的名字,输入段和输出段可以完全不同。

其用法举例如下:

int var __attribute__((section(".xdata"))) = 0;

这样定义的变量var将被放入名为.xdata的输入段,(注意:__attribute__这种用法中的括号好像很严格,这里的几个括号好象一个也不能少。)

static int __attribute__((section(".xinit"))) functionA(void)

{

.....
}

这个例子将使函数functionA被放入名叫.xinit的输入段。

需要着重注意的是,__attribute__的section属性只指定对象的输入段,它并不能影响所指定对象最终会放在可执行文件的什么段。

2. Linux Kernel源代码中与段有关的重要宏定义

A. 关于__init、__initdata、__exit、__exitdata及类似的宏

打开Linux Kernel源代码树中的文件:include/init.h,可以看到有下面的宏定议:

#define __init __attribute__ ((__section__ (".init.text"))) __cold

#define __initdata __attribute__ (( __section__ (".init.data")))

#define __exitdata __attribute__ (( __section__ (".exit.data")))

#define __exit_call __attribute_used__ __attribute__ (( __section__ (".exitcall.exit")))

#define __init_refok oninline __attribute__ ((__section__ (".text.init.refok")))

#define __initdata_refok __attribute__ ((__section__ (".data.init.refok")))

#define __exit_refok noinline __attribute__ ((__section__ (".exit.text.refok")))

.........

#ifdef MODULE

#define __exit __attribute__ (( __section__ (".exit.text"))) __cold

#else

#define __exit __attribute_used__ __attribute__ ((__section__ (".exit.text"))) __cold

#endif

对于经常写驱动模块或翻阅Kernel源代码的人,看到熟悉的宏了吧:__init, __initdata, __exit, __exitdata。

__init 宏最常用的地方是驱动模块初始化函数的定义处,其目的是将驱动模块的初始化函数放入名叫.init.text的输入段。对于__initdata来说,用 于数据定义,目的是将数据放入名叫.init.data的输入段。其它几个宏也类似。另外需要注意的是,在以上定意中,用__section__代替了 section。还有其它一些类似的宏定义,这里不一一列出,其作用都是类似的。

B. 关于initcall的一些宏定义

在该文件中,下面这条宏定议更为重要,它是一条可扩展的宏:

#define __define_initcall(level,fn,id) \

static initcall_t __initcall_##fn##id __attribute_used__ \

__attribute__ ((__section__(".initcall" level ".init"))) = fn

这条宏带有3个参数:level,fn, id,分析该宏可以看出:

 1.其用来定义类型为initcall_t的static函数指针,函数指针的名称由参数fn和id决定:__initcall_##fn##id,这 就是函数指针的名称,它其实是一个变量名称。从该名称的定义方法我们其学到了宏定义的一种高级用法,即利用宏的参数产生名称,这要借助于"##"这一符号 组合的作用。

 2. 这一函数指针变量放入什么输入段呢,请看__attribute__ ((__section__ (".initcall" levle ".init"))),输入段的名称由level决定,如果level="1",则输入段是.initcall1.init,如果level="3s",则输入段是.initcall3s.init。这一函数指针变量就是放在用这种方法决定的输入段中的。

 3. 这一定义的函数指针变量的初始值是什么叫,其实就是宏参数fn,实际使用中,fn其实就是真实定义好的函数。

该宏定义并不直接使用,请看接下来的这些宏定义:

#define pure_initcall(fn) __define_initcall("0",fn,0)
#define core_initcall(fn) __define_initcall("1",fn,1)
#define core_initcall_sync(fn) __define_initcall("1s",fn,1s)
#define postcore_initcall(fn) __define_initcall("2",fn,2)
#define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s)
#define arch_initcall(fn) __define_initcall("3",fn,3)
#define arch_initcall_sync(fn) __define_initcall("3s",fn,3s)
#define subsys_initcall(fn) __define_initcall("4",fn,4)
#define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s)
#define fs_initcall(fn) __define_initcall("5",fn,5)
#define fs_initcall_sync(fn) __define_initcall("5s",fn,5s)
#define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs)
#define device_initcall(fn) __define_initcall("6",fn,6)
#define device_initcall_sync(fn) __define_initcall("6s",fn,6s)
#define late_initcall(fn) __define_initcall("7",fn,7)
#define late_initcall_sync(fn) __define_initcall("7s",fn,7s)

这些宏定义出来是为了方便的使用__define_initcall宏定义的,上面每条宏第一次使用时都会产生一个新的输入段。

接下来还有一条

#define __initcall(fn) device_initcall(fn)
这一条其实只是定义了另一个别名,即平常使用的__initcall其实就是这儿的device_initcall,用它定义的函数指定位于段.initcall6.init中。

C. __setup宏的来源及使用

__setup这条宏在Linux Kernel中使用最多的地方就是定义处理Kernel启动参数的函数及数据结构,请看下面的宏定义:

#define __setup_param(str, unique_id, fn, early) \
static char __setup_str_##unique_id[] __initdata __aligned(1) = str; \
static struct obs_kernel_param __setup_##unique_id \
__used __section(.init.setup) \
__attribute__((aligned((sizeof(long))))) \
= { __setup_str_##unique_id, fn, early }


#define __setup(str, fn) \
__setup_param(str, fn, fn, 0)

使用Kernel中的例子分析一下这两条定义:

__setup("root=",root_dev_setup);

这条语句出现在init/do_mounts.c中,其作用是处理Kernel启动时的像root=/dev/mtdblock3之类的参数的。

分解一下这条语句,首先变为:

__setup_param("root=",root_dev_setup,root_dev_setup,0);

继续分解,将得到下面这段代吗:

static char __setup_str_root_dev_setup_id[] __initdata __aligned(1) = "root=";
static struct obs_kernel_param __setup_root_dev_setup_id
__used __section(.init.setup)
__attribute__((aligned((sizeof(long)))))
= { __setup_str_root_dev_setup_id, root_dev_setup, 0 };


这段代码定义了两个变量:字符数组变量__setup_str_root_dev_setup_id,其初始化内容为"root=",由于该变量用 __initdata修饰,它将被放入.init.data输入段;另一变量是结构变量__setup_root_dev_setup_id,其类型为 struct obs_kernel_param, 该变理被放入输入段.init.setup中。结构struct struct obs_kernel_param也在该文件中定义如下:

struct obs_kernel_param {
const char *str;
int (*setup_func)(char *);
int early;
};

变量__setup_root_dev_setup_id的三个成员分别被初始化为:

__setup_str_root_dev_setup_id --> 前面定义的字符数组变量,初始内容为"root="。

root_dev_setup --> 通过宏传过来的处理函数。

0 -->常量0,该成员的作用以后分析。

现在不难想像内核启动时怎么处理启动参数的了:通过__setup宏定义obs_kernel_param结构变量都被放入.init.setup段中, 这样一来实际是使.init.setup段变成一张表,Kernel在处理每一个启动参数时,都会来查找这张表,与每一个数据项中的成员str进行比较, 如果完全相同,就会调用该数据项的函数指针成员setup_func所指向的函数(该函数是在使用__setup宏定义该变量时传入的函数参数),并将启 动参数如root=后面的内容传给该处理函数。

 

你可能感兴趣的:(struct,function,编译器,deprecated,profiling,attributes)