传送门:点击打开链接
题意:3种操作,1单点更新,2路径正负反转,3路径查询最大值
思路:线段树维护最大值和最小值和一个懒惰标记,然后在线段树的基础上用树链剖分维护
#include<map> #include<set> #include<cmath> #include<ctime> #include<stack> #include<queue> #include<cstdio> #include<cctype> #include<string> #include<vector> #include<cstring> #include<iostream> #include<algorithm> #include<functional> #define fuck(x) cout<<"["<<x<<"]" #define FIN freopen("input.txt","r",stdin) #define FOUT freopen("output.txt","w+",stdout) using namespace std; typedef long long LL; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 const int MX = 1e4 + 5; const int INF = 0x3f3f3f3f; struct Edge { int u, v, nxt, cost; } E[MX << 2]; int Head[MX], h_r; void edge_init() { h_r = 0; memset(Head, -1, sizeof(Head)); } void edge_add(int u, int v, int cost) { E[h_r].v = v; E[h_r].u = u; E[h_r].cost = cost; E[h_r].nxt = Head[u]; Head[u] = h_r++; } int MAX[MX << 2], MIN[MX << 2], col[MX << 2], A[MX]; void push_up(int rt) { MAX[rt] = max(MAX[rt << 1], MAX[rt << 1 | 1]); MIN[rt] = min(MIN[rt << 1], MIN[rt << 1 | 1]); } void change(int rt) { swap(MAX[rt], MIN[rt]); MAX[rt] = -MAX[rt]; MIN[rt] = -MIN[rt]; } void push_down(int rt) { if(col[rt]) { col[rt << 1] ^= 1; col[rt << 1 | 1] ^= 1; change(rt << 1); change(rt << 1 | 1); col[rt] = 0; } } void build(int l, int r, int rt) { col[rt] = 0; if(l == r) { MAX[rt] = MIN[rt] = A[l]; return; } int m = (l + r) >> 1; build(lson); build(rson); push_up(rt); } void update_seg(int L, int R, int l, int r, int rt) { if(L <= l && r <= R) { change(rt); col[rt] ^= 1; return; } int m = (l + r) >> 1; push_down(rt); if(L <= m) update_seg(L, R, lson); if(R > m) update_seg(L, R, rson); push_up(rt); } void update(int x, int d, int l, int r, int rt) { if(l == r) { MAX[rt] = MIN[rt] = d; return; } int m = (l + r) >> 1; push_down(rt); if(x <= m) update(x, d, lson); else update(x, d, rson); push_up(rt); } int query(int L, int R, int l, int r, int rt) { if(L <= l && r <= R) { return MAX[rt]; } int m = (l + r) >> 1, ret = -INF; push_down(rt); if(L <= m) ret = max(ret, query(L, R, lson)); if(R > m) ret = max(ret, query(L, R, rson)); return ret; } int fa[MX], top[MX], siz[MX], son[MX], dep[MX], id[MX], rear; void DFS1(int u, int f, int d) { fa[u] = f; dep[u] = d; son[u] = 0; siz[u] = 1; for(int i = Head[u]; ~i; i = E[i].nxt) { int v = E[i].v; if(v == f) continue; DFS1(v, u, d + 1); siz[u] += siz[v]; if(siz[son[u]] < siz[v]) { son[u] = v; } } } void DFS2(int u, int tp) { top[u] = tp; id[u] = ++rear; if(son[u]) DFS2(son[u], tp); for(int i = Head[u]; ~i; i = E[i].nxt) { int v = E[i].v; if(v == fa[u] || v == son[u]) continue; DFS2(v, v); } } /*节点1不使用,建树要小心 一般边使用更深的那个点的id编号来表示 */ void HLD_presolve() { rear = 0; DFS1(1, 0, 1); DFS2(1, 1); for(int i = 0; i < 2 * (rear - 1); i += 2) { int u = E[i].u, v = E[i].v; if(dep[u] < dep[v]) swap(u, v); A[id[u]] = E[i].cost; } A[1] = -INF; build(1, rear, 1); } /*找到对应边的更深的点的id编号*/ void HLD_update(int x, int d) { x = (x - 1) * 2; int u = E[x].u, v = E[x].v; if(dep[u] < dep[v]) swap(u, v); update(id[u], d, 1, rear, 1); } /*注意最后一个查询与单点更新的区别以及u==v就需要返回x*/ void HLD_negate(int u, int v) { int tp1 = top[u], tp2 = top[v]; while(tp1 != tp2) { if(dep[tp1] < dep[tp2]) { swap(u, v); swap(tp1, tp2); } update_seg(id[tp1], id[u], 1, rear, 1); u = fa[tp1]; tp1 = top[u]; } if(u == v) return; if(dep[u] > dep[v]) swap(u, v); update_seg(id[son[u]], id[v], 1, rear, 1); } int HLD_query(int u, int v) { int tp1 = top[u], tp2 = top[v], ans = -INF; while(tp1 != tp2) { if(dep[tp1] < dep[tp2]) { swap(u, v); swap(tp1, tp2); } ans = max(ans, query(id[tp1], id[u], 1, rear, 1)); u = fa[tp1]; tp1 = top[u]; } if(u == v) return ans; if(dep[u] > dep[v]) swap(u, v); ans = max(ans, query(id[son[u]], id[v], 1, rear, 1)); return ans; } int main() { int T, n; //FIN; scanf("%d", &T); while(T--) { edge_init(); scanf("%d", &n); for(int i = 1; i <= n - 1; i++) { int u, v, cost; scanf("%d%d%d", &u, &v, &cost); edge_add(u, v, cost); edge_add(v, u, cost); } HLD_presolve(); char op[10]; int a, b; while(scanf("%s", op), op[0] != 'D') { scanf("%d%d", &a, &b); if(op[0] == 'Q') printf("%d\n", HLD_query(a, b)); else if(op[0] == 'C') HLD_update(a, b); else HLD_negate(a, b); } } return 0; }