判断两条线段是否相交

给定两个点:

typedef  struct {

  double  x, y;

} Point;

Point A1,A2,B1,B2;

首先引入两个实验:

a.快速排斥实验

设以线段A1A2和线段B1B2为对角线的矩形为M,N;

若M,N 不相交,则两个线段显然不相交;

所以:满足第一个条件时:两个线段可能相交。

 

b.跨立实验

如果两线段相交,则两线段必然相互跨立对方.若A1A2跨立B1B2,则矢量( A1 - B1 ) 和(A2-B1)位于矢量(B2-B1)的两侧,

判断两条线段是否相交_第1张图片

即(A1-B1) × (B2-B1) * (A2-B1) × (B2-B1)<0。

上式可改写成(A1-B1) × (B2-B1) * (B2-B1) × (A2-A1)>0。

应该判断两次,即两条线段都要为直线,判断另一直线的两端点是否在它两边,若是则两线段相交。

若积极满跨立实验是不行的,如下面的情况:

判断两条线段是否相交_第2张图片

即两条线段在同一条直线上。所以我们要同时满足两次跨立和快速排斥实验。

 

总体分析:

当(A1-B1) × (B2-B1)=0时,说明(A1-B1)和(B2-B1)共线,但是因为已经通过快速排斥试验,所以 A1一定在线段 B1B2上;同理,(B2-B1)×(A2-B1)=0 说明A2一定在线段B1B2上。所以判断A1A2跨立B1B2的依据是:(A1-B1) × (B2-B1) * (B2-B1) × (A2-B1) >= 0。

同理判断B1B2跨立A1A2的依据是:(B1-A1) × (A2-A1) * (A2-A1) × (B2-A1) >= 0。

如图:

判断两条线段是否相交_第3张图片

应用:

1.       判断两个线段相交

2.       判断线段与直线相交

3.       判断点在矩形内

你可能感兴趣的:(判断两条线段是否相交)