接上文。
// Matrices are stored in row-major order: // M(row, col) = *(M.elements + row * M.width + col) typedef struct { int width; int height; float *elements; } Matrix; // Thread block size #define BLOCK_SIZE 16 // Forward declaration of the matrix multiplication kernel __global__ void MatMulKernel(const Matrix, const Matrix, Matrix); // Matrix multiplication - Host code // Matrix dimensions are assumed to be multiples of BLOCK_SIZE void MatMul(const Matrix A, const Matrix B, Matrix C) { // Load A and B to device memory Matrix d_A; d_A.width = A.width; d_A.height = A.height; size_t size = A.width * A.height * sizeof(float); cudaMalloc(&d_A.elements, size); cudaMemcpy(d_A.elements, A.elements, size, cudaMemcpyHostToDevice); Matrix d_B; d_B.width = B.width; d_B.height = B.height; size = B.width * B.height * sizeof(float); cudaMalloc(&d_B.elements, size); cudaMemcpy(d_B.elements, B.elements, size, cudaMemcpyHostToDevice); // Allocate C in device memory Matrix d_C; d_C.width = C.width; d_C.height = C.height; size = C.width * C.height * sizeof(float); cudaMalloc(&d_C.elements, size); // Invoke kernel dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y); MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C); // Read C from device memory cudaMemcpy(C.elements, d_c.elements, size, cudaMemcpyDeviceToHost); // Free device memory cudaFree(d_A.elements); cudaFree(d_B.elements); cudaFree(d_C.elements); } // Matrix multiplication kernel called by MatMul() __global__ void MatMulKernel(Matrix A, Matrix B, Matrix C) { // Each thread computes one element of C // by accumulating results into Cvalue float Cvalue = 0; int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.xl for (int e = 0; e < A.width; ++e) Cvalue += A.elements[row * A.width + e] * B.elements[e * B.width + col]; C.elements[row * C.width + col] = Cvalue; }可以看出,为了计算矩阵C的任何一个元素,程序都需要从全局内存(global memory)中获得矩阵A的一行和矩阵B的一列。因此,完成这一计算矩阵A被读取了B.width次,矩阵B被读取了A.height次。
// Matrices are stored in row-major order; // M(row, col) = *(M.elements + row * M.stride + col) typedef struct { int width; int height; int stride; float* elements; } Matrix; // Get a matrix element __device__ float GetElement(const Matrix A, int row, int col) { return A.elements[row * A.stride + col]; } // Set a matrix element __device__ void SetElement(Matrix A, int row, int col, float value) { A.elements[row * A.stride + col] = value; } // Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is // located col sub-matrices to the right and row sub-matrices down // from the upper-left corner of A __device__ Matrix GetSubMatrix(Matrix A, int row, int col) { Matrix Asub; Asub.width = BLOCK_SIZE; Asub.height = BLOCK_SIZE; Asub.stride = A.stride; Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row + BLOCK_SIZE * col]; return Asub; } // Thread block size #define BLOCK_SIZE 16 // Forward declaration of the matrix multiplication kernel __global__ void MatMulKernel(const Matrix, const Matrix, Matrix); // Matrix multiplication - Host code // Matrix dimensions are assumed to be multiples of BLOCK_SIZE void MatMul(const Matrix A, const Matrix B, Matrix C) { // Load A and B to device memory Matrix d_A; d_A.width = d_A.stride = A.width; d_A.height = A.height; size_t size = A.width * A.height * sizeof(float); cudaMalloc(&d_A.elements, size); cudaMemcpy(d_A.elements, A.elements, size, cudaMemcpyHostToDevice); Matrix d_B; d_B.width = d_B.stride = B.width; d_B.height = B.height; size = B.width * B.height * sizeof(float); cudaMalloc(&d_B.elements, size); cudaMemcpy(d_B.elements, B.elements, size, cudaMemcpyHostToDevice); // Allocate C in device memory Matrix d_C; d_C.width = d_C.stride = C.width; d_C.height = C.height; size = C.width * C.height * sizeof(float); cudaMalloc(&d_C.elements, size); // Invoke kernel dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y); MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C); // Read C from device memory cudaMemcpy(C.elements, d_C.elements, size, cudaMemcpyDeviceToHost); // Free device memory cudaFree(d_A.elements); cudaFree(d_B.elements); cudaFree(d_C.elements); } // Matrix multiplication kernel called by MatMul() __global__ void MatMulKernel(Matrix A, Matrix B, Matrix C) { // Block row and column int blockRow = blockIdx.y; int blockCol = blockIdx.x; // Each thread block computes one sub-matrix Csub of C Matrix Csub = GetSubMatrix(C, blockRow, blockCol); // Each thread computes one element of Csub // by accumulating results into Cvalue float Cvalue = 0; // Thread row and column within Csub int row = threadIdx.y; int col = threadIdx.x; // Look over all the sub-matrices of A and B that are required to compute Csub // Multiply each pair of sub-matrices together and accumulate the results for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) { // Get sub-matrix Asub of A Matrix Asub = GetSubMatrix(A, blockRow, m); // Get sub-matrix Bsub of B Matrix Bsub = GetSubMatrix(B, m, blockCol); // Shared memory used to store Asub and Bsub respectively __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; // Load Asub and Bsub from device memory to shared memory // Each thread loads one element of each sub-matrix As[row][col] = GetElement(Asub, row, col); Bs[row][col] = GetElement(Bsub, row, col); // Synchronize to make sure the sub-matrices are loaded // before starting the computation __syncthreads(); // Multiply Asub and Bsub together for (int e = 0; e < BLOCK_SIZE; ++e) Cvalue += As[row][e] * Bs[e][col]; // Synchronize to make sure that the preceding computation is done before // loading two new sub-matrices of A and B in the next iteration __syncthreads(); } // Write Csub to device memory // Each thread writes one element SetElement(Csub, row, col, Cvalue); }